Hey Treethinkers!
Just a quick update on some recent work—by
the marvelous Mike May and sensational Sebastian Höhna—that we’re very excited about in the Moore lab.

First, we have a paper in review that describes a new Bayesian approach for detecting mass-extinction events. Briefly, this is a novel method for detecting mass-extinction events from phylogenies estimated from molecular sequence data. We develop our approach in a Bayesian statistical framework, which enables us to harness prior information on the frequency and magnitude of mass-extinction events. The approach is based on an episodic stochastic-branching process model in which rates of speciation and extinction are constant between rate-shift events. We model three types of events: (1) instantaneous tree-wide shifts in speciation rate; (2) instantaneous tree-wide shifts in extinction rate, and; (3) instantaneous tree-wide mass-extinction events.

Each of the events is described by a separate compound Poisson process (CPP) model,
where the waiting times between each event are exponentially distributed with event-specific rate parameters. The magnitude of each event is drawn from an event-specific prior distribution. Parameters of the model are then estimated using a reversible-jump Markov chain Monte Carlo (rjMCMC) algorithm. We demonstrate via simulation that this method has substantial power to detect the number of mass-extinction events, provides unbiased estimates of the timing of mass-extinction events, while exhibiting an appropriate (i.e., below 5%) false discovery rate even in the case of background diversification rate variation. Finally, we provide an empirical application of this approach to conifers, which reveals that this group has experienced two major episodes of mass extinction. This new approach—the CPP on Mass Extinction Times (CoMET) model—provides an effective tool for identifying mass-extinction events from molecular phylogenies, even when the history of those groups includes more prosaic temporal variation in diversification rate.

This paper is available from the bioRxiv here.

We’ve also submitted an application note for our new R package, TESS 2.0, a Bayesian software package implementing the CoMET model and many other tasty methods for inferring rates of lineage diversification. Briefly, TESS implements statistical approaches for estimating rates of lineage diversification (speciation — extinction) from phylogentic trees. The program provides a flexible Bayesian framework for specifying an effectively infinite array of diversification models—where diversification rates are constant, vary continuously, or change episodically through time—and implements numerical methods to estimate parameters of these models from molecular phylogenies.

We provide robust Bayesian methods for assessing the relative fit of these models of lineage diversification to a given study tree–-e.g., where stepping-stone simulation is used to estimate the marginal likelihoods of competing models, which can then be compared using Bayes factors. We also provide Bayesian methods for evaluating the absolute fit of these branching-process models to a given study tree—i.e., where posterior-predictive simulation is used to assess the ability of a candidate model to generate the observed phylogenetic data.

This paper is available from the bioRxiv here.

Finally, all this good stuff is implemented in the newly released TESS 2.0 R package (including the source code, comprehensive user manual, and example files) is available from CRAN here.

One thought on “New Bayesian methods for inferring rates of lineage diversification!

Comments are closed.