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Topics for today

o Morning 1 - Selection of substitution models
o Morning 2 - Model Complexity & Selection of partition models
o Afternoon 1 - Model Adequacy

o Afternoon 2 - Thoughts and discussion on ‘big data

Model Selection and Testing

General Introduction to  Model selection of Model averaging of Model selection of Assessing
Model selection common substitution substitution models partition models Phylogenetic Reliability
Comparing relative model models for one locus Reversible-jump MCMC Comparing relative model U?Ing RevBayes and
fit with Bayes factors Comparing relative model over substitution models fit with Bayes factors P

fit with Bayes factors Model adequacy testing

using posterior prediction
(Data Version).

Assessing

Phylogenetic Reliability
Ug,ing RevBayes and . . .
g https://revbayes.github.io/tutorials/

Model adequacy testing
using posterior prediction
(Inference Version).
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S0...genomes, eh?

oGTR+I+I" seems pretty complicated!

> 10 parameters to describe change in 4 nucleotides

> Surely that's enough.
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Challenge 1: Genes Vary in Rate <€)

Reverse Transcriptase E




Challenge 2: Genes Vary in Model/Parameters o




Challenge 3: Genes Vary in Topology 0

> Incomplete Lineage Sorting
o Gene Duplication

o Horizontal Gene Transfer



Challenge 4: Variation in Gene-Model Fit

o (Genes and models should fit together like a hand in a glove. A glove
abstracts a hand, but in a useful way.

o When fit is poor, the glove may not function properly.




Challenge 4: Variation in Gene-Model Fit

o Nearly all of our models (or at least the ones we usually consider) still
assume a lot of things:

o Independence of sites
o (onstant site rates across the tree

o (onstant base frequencies across the tree



Challenge 5: Non-homology of sites and genes

o An alignment is a statement of homology.

o We are saying that we are certain that nucleotides in a column have a
common ancestor that diverged due to a speciation event (usually).

o This is commonly violated in at least two circumstances:
« Alignments can be uncertain

o Paralogy (can exert undue influence)



Types of Variation Across Genes
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Rate

Topology

Model Parameters
(evolutionary dynamics)



S0...how do we deal with this variation?

o We develop elegant models that relax these assumptions!
-Now we do 3 things with our models:

o Select the best available model (model selection)
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S0...how do we deal with this variation?

o We develop elegant models that relax these assumptions!
-Now we do 3 things with our models:

o Select the best available model (model selection)

o (ritically evaluate the fit of this model (model adequacy)

o Accept, refine, or reject (the art)



Model Selection

o To do statistical inference we must have a model

o \What model should that be?

o Qur goal should be to have a model that is complex

enough to capture the “important” variation in the data,
but not be more complex than it needs to be.



Model Selection

o Underfitting model: does not capture important variation in
the data




Model Selection

o Qverfitting model: model captures all variation in the data,
but is not a realistic description of the underlying process




Model Selection

o Proper fit: model captures important variation




Bias Variance tradeoff

Bias
Variance

N/

Number of Parameters

Simple | Complex




Model

Selection

Bias

The Fundamental Tradeoff

Number of Parameters

Variance



Model Selection

Model too simple!
Were misinterpreting the data.

Bias

Number of Parameters

Variance



Model Selection

Model too complicated!
We don't have enough information.

Bias
Variance

Number of Parameters



Model Selection

Bias

Number of Parameters

Variance



Model Selection

Bias and Variance can be traded off in different ways.

This leads to multiple criteria for model selection.

Bias
Variance

Number of Parameters



The Likelihood Function

P(

0,

=)

Read as “the probability of the sequence data

given a tree and model

The quantity by which the data provide information.

Compares how well different trees and models predict the
observed data or as a “measure of relative surprise "



Maximum Likelihood

Maximum LiRelihood
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Good Search

Bad Search

Likelihood

Tree 1 Tree 2 Tree 3
Tree/Parameter Space



More Parameters = Better Likelihood
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ML-based Model Selection

[t the more complex model always gives 3
likelihood that is at least as good as a
simpler model, even if the simpler one is
true, we need ways to assess whether
it's enough better to warrant our attention.




Likelihood Model Selection

o Simple comparison of likelihoods is therefore not useful

o will typically lead us to choose overly complicated
models with high error variance

o Model selection approaches are looRing for a tradeoft
between increase in fit and increased complexity of the
model|

o incorporate a measure of each



ML-based Model Selection

[t the more complex model always gives 3
likelihood that is at least as good as a
simpler model, even if the simpler one is
true, we need ways to assess whether
it's enough better to warrant our attention.

> ARaikes Information Criterion (AIC)

- Bayesian Information Criterion (BIC)

o Likelihood Ratio Test (LRT)




ML-based Model Selection

[t the more complex model always gives 3
likelihood that is at least as good as a
simpler model, even if the simpler one is
true, we need ways to assess whether
it's enough better to warrant our attention.

> ARaikes Information Criterion (AIC)

- Bayesian Information Criterion (BIC)

ikelihood Ratio Test (LRT) ,\\ Different penalties for

extra parameters.



ML-based Model Selection

ARkaikes Information Criterion (AIC)

Minimum AIC preferred.

A

AIC = 2k — 2In(L)

2

Penalty for more Lirelihood term becomes
parameters (k) more negative when L worse.



ML-based Model Selection

AIC = 2k — 2In(L)

A

BIC = In(n)k — 2in(L)



ML-based Model Selection

A

AIC = 2k — 2In(L)

A

BIC = In(n)k — 2in(L)

Ln (n)

IIIIII

Penalty term is larger
for BIC whenn>7



ML-based Model Selection

AIC = 2k — 2In(L)

A

BIC = In(n)k — 2in(L)

fu(@),

LRT o
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Likelihood Ratio Test - Hierarchy of Nestedness
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Likelihood Model Selection

o Strength of penalty for adding extra parameters varies
o often BIC> AIC > LRT



Bayesian Model Selection

P(D]0)P(0)

P(OID) = =75



Bayesian Model Selection

P(D]0)P(0)
P(D)

P0|D) =

P(DI|6, M)P(0| M)

PO|D, M) = PO



Bayesian Model Selection

P(D|0)P (6
P(0|D) = (P‘(l)?)( )
POID. M) = P(DI|6, M)P(6| M)

[ P(D|6, M)P(6|M)d6



Bayesian Model Selection

P(D|0)P (6
P(0|D) = (P‘(l)?)( )
POID. M) = P(DI|6, M)P(6| M)

[ P(D|6, M)P(6|M)d6



Marginal Likelihood Example

Evolutionary Distance
Sp.A — 5p.B
Compare JCand K80 models

v: edge length
estimated in both models

k: transition-transversion ratio
estimated in K80 and fixed at 1 for JC

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

Simulation Conditions
Sequence length: 500 bp
Truev: 0.15
True k: 5.0

K80 (whole 2D plane)

JC(just 1D line)

Prior is flat over whole area.

10

0 00

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

Simulation Conditions K80 (whole 2D plane)
Sequence length: 500 bp |

Truev: 0.15
True R: 5.0

JC(just 1D line)

0.2

0.1 v

Prior is flat over whole area.

10 0.3

.

0 00

K80 wins!

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

K80 (whole 2D plane)

Simulation Conditions
Sequence length: 500 bp
Truev: 0.15
Truek: 1.0

JC(just 1D line)

Prior is flat over whole area.

o
-

0 00

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

 rulation Condition K80 (whole 2D plane)

Sequence length: 500 bp
Truev: 0.15
Truek: 1.0

JC(just 1D line)

Prior is flat over whole area.

o
\\.

0.2
0.1

v
S Jwing!

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

Important contrast with ML-based model selection: by
marginalizing, rather than maximizing, marginal
likelihoods automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.



Marginal Likelihood Example

Important contrast with ML-based model selection: by
marginalizing, rather than maximizing, marginal
likelihoods automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.

But how can we estimate them?



(alculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

\

Prior
Likelihood




(alculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
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(alculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Take average of blue dots




(alculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Take average of blue dots




(alculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Probability Density

04
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0.2

0.0

Prior
Likelihood

Take average of blue dots?M

Wed like to make sure were
sampling high likelihood parts of
space with reasonable frequency.



(alculating Marginal Likelihoods

Probability Density

Less-Naive Approach 2- Sample from the posterior

Q _
-

0.8

0.6

04

0.2

0.0

Parameter

Prior

Posterior
(~Likelihood)

Since were supposed to be
integrating across the prior, we
need to correct for the fact that

our samples are from the posterior.



(alculating Marginal Likelihoods

Less-Naive Approach 2- Sample from the posterior

The Harmonic Mean Method
1 1 1 1

What's an important property of harmonic means?

Anyone remember discussing bottlenecks in pop gen?



(alculating Marginal Likelihoods

Less-Naive Approach 2- Sample from the posterior

1.0

The reverse problem to our first
naive approach!

0.8

Rarely sampled low liRelihoods
have a big influence on estimates.

0.6

Probability Density
0.4

Very unstable.

0.2

A

Parameter



(alculating Marginal Likelihoods

Approach 3 - Sample from a series of distributions

Steppingstone or path sampling



Paul Lewis - Workshop on Molecular Evolution 2016

Steppingstone Sampling

P(D) / P(D|6)P(6)

Fquivalent to estimating
the area under this curve.



Paul Lewis - Workshop on Molecular Evolution 2016

Steppingstone Sampling

Prior
P(0) An alternative way to think about our first

approach (sampling directly from the
prior) is to sample points from the prior
(area=1.0), then ask what proportion fall
under the curve of interest.

1.5

Unfortunately, not many!
As before, this is unstable.

0.5

&

[ I I I I I
0.0 0.2 \ 0.4 0.6 0.8 1.0

Unnormalized Posterior — P(D|6)P(6)




Paul Lewis - Workshop on Molecular Evolution 2016

Steppingstone Sampling

0
-

Lets try it in steps!

Sample from this distribution

1.0

«

See what fraction of samples

0 are under this curve
A That fraction is an
- estimate of this ratio
010 0|2 OI4 0|6 018 1!0

wo () (20 (29 (2) (59 (22) (52) (52) (20) (22)



Power Posteriors

p(lDi " ( ) (}{) (f/g) ( ) ( ) (%) (%) (%2) (Zj@ (%)
Posterior "
B =1 o

P(D8)s o P(DI0)"P(6)



Power Posteriors

C1.0 . B
—— — Stable estimate of marginal likelihood!

C0.0

But it requires a specific type of analysis,
independent of standard MCMC.



Bayesian Model Selection

P(D|0)P (6
P(0|D) = (P‘(l)?)( )
POID. M) = P(DI|6, M)P(6| M)

[ P(D|6, M)P(6|M)d6



The Bayes Factor

P(D|M,) [ P(D|0, My)P(6|My)de
P(D|Ms) — [ P(DI|6, My)P(6|My)df

Ratio of the probability of the data under two models



The Bayes Factor

P(D|M,) [ P(D|0, My)P(6|My)de
P(D|Ms) — [ P(DI|6, My)P(6|My)df

Ratio of the probability of the data under two models
Note that this is related to the Likelihood ratio test



Bayes Factors

2In(BF) BF Strength of evidence
0-2 1-3 Barely worth mentioning.
2-6 3-20 Positive
6-10  20-150 Strong
>10 >150 Very Strong

Robert E. Kass & Adrian E. Raftery (1995). "Bayes Factors'. Journal of the American Statistical Association. 90:791



Bayes Factors

For now, were going to use these to compare different
models of sequence evolution as our hypotheses.

However, BFs can also be used for other hypotheses,
like partition models (later), topological relationships,
and much more.



Or...dont choose a model!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump
between them. Integrate out uncertainty about which model is
best. This is a Bayesian form of model averaging.

We already do this for trees. (an also do this for models.



Or...dont choose a model!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump
between them. Integrate out uncertainty about which model is
best. This is a Bayesian form of model averaging.

We already do this for trees. (an also do this for models.

*Disclaimer: Setting up proper reversible jump
moves can often be very challenging.



