Model Selection, Model Adequacy, and Big Data

 Bob ThomsonDept. of Biology
University of Hawaii
thomsonr@hawaii.edu

Topics for today

- Morning 1 - Selection of substitution models
- Morning 2 - Model Complexity \& Selection of partition models
- Afternoon 1 - Model Adequacy
- Afternoon 2 - Thoughts and discussion on 'big data'

Model Selection and Testing
General Introduction to
Model selection

Comparing relative model fit with Bayes factors

Model selection of common substitution models for one locus

Comparing relative model fit with Bayes factors

Model averaging of substitution models
Reversible-jump MCMC over substitution models

Model selection of partition models
 Comparing relative model fit with Bayes factors

Assessing
Phylogenetic Reliability
Using RevBayes and P^{3}
Model adequacy testing using posterior prediction
(Data Version).

Assessing
Phylogenetic Reliability
Using RevBayes and P^{3}

Model adequacy testing using posterior prediction (Inference Version).
https://revbayes.github.o/tutorials/

Topics for today

- Morning 1 - Selection of substitution models
- Morning 2 - Model Complexity \& Selection of partition models
- Afternoon 1 - Model Adequacy
- Afternoon 2 - Thoughts and discussion on 'big data'

Model Selection and Testing
General Introduction to
Model selection

Comparing relative model fit with Bayes factors

Assessing
Phylogenetic Reliability Using RevBayes and P^{3}

Model adequacy testing using posterior prediction (Inference Version).

Morning 1

Model averaging of substitution models
Reversible-jump MCMC over substitution models

https://revbayes.github.io/tutorials/

So...genomes, eh?

- GTR $+1+\Gamma$ seems pretty complicated!
- 10 parameters to describe change in 4 nucleotides
- Surely that's enough.

Challenge 1: Genes Vary in Rate

Envelope

Reverse Transcriptase

HIV

Challenge 2: Genes Vary in Model/Parameters

Challenge 3: Genes Vary in Topology

- Incomplete Lineage Sorting
- Gene Duplication
- Horizontal Gene Transfer

Challenge 4: Variation in Gene-Model Fit

- Genes and models should fit together like a hand in a glove. A glove abstracts a hand, but in a useful way.
- When fit is poor, the glove may not function properly.

Challenge 4: Variation in Gene-Model Fit

- Nearly all of our models (or at least the ones we usually consider) still assume a lot of things:
- Independence of sites
- Constant site rates across the tree
- Constant base frequencies across the tree

Challenge 5 : Non-homology of sites and genes

- An alignment is a statement of homology.
- We are saying that we are certain that nucleotides in a column have a common ancestor that diverged due to a speciation event (usually).
- This is commonly violated in at least two circumstances:
- Alignments can be uncertain
- Paralogy (can exert undue influence)

Types of Variation Across Genes

Rate

Absolute Model Fit

Topology

Model Parameters
Incorrect Homology
(evolutionary dynamics)

So...how do we deal with this variation?

- We develop elegant models that relax these assumptions!
- Now we do 3 things with our models:
- Select the best available model (model selection)

So...how do we deal with this variation?

- We develop elegant models that relax these assumptions!
- Now we do 3 things with our models:
- Select the best available model (model selection)
- Critically evaluate the fit of this model (model adequacy)

So...how do we deal with this variation?

- We develop elegant models that relax these assumptions!
- Now we do 3 things with our models:
- Select the best available model (model selection)
- Critically evaluate the fit of this model (model adequacy)
- Accept, refine, or reject (the art)

Model Selection

- To do statistical inference we must have a model
- What model should that be?
- Our goal should be to have a model that is complex enough to capture the "important" variation in the data, but not be more complex than it needs to be.

Model Selection

- Underfitting model: does not capture important variation in the data

Model Selection

- Overfitting model: model captures all variation in the data, but is not a realistic description of the underlying process

Model Selection

- Proper fit: model captures important variation

Bias Variance tradeoff

Number of Parameters

Model Selection

The Fundamental Tradeoff

Model Selection

Model too simple!

Were misinterpreting the data.

Number of Parameters

Model Selection

Model too complicated!
 We don't have enough information.

Number of Parameters

Model Selection

Model Selection

Bias and Variance can be traded off in different ways.
This leads to multiple criteria for model selection.

The Likelihood Function

Read as "the probability of the sequence data given a tree and model".

The quantity by which the data provide information.
Compares how well different trees and models predict the observed data or as a "measure of relative surprise".

Maximum Likelihood

More Parameters = Better Likelihood

ML-based Model Selection

If the more complex model always gives a likelihood that is at least as good as a simpler model, even if the simpler one is true, we need ways to assess whether it's enough better to warrant our attention.

Likelihood Model Selection

- Simple comparison of likelihoods is therefore not useful
- will typically lead us to choose overly complicated models with high error variance
- Model selection approaches are looking for a tradeoff between increase in fit and increased complexity of the model
- incorporate a measure of each

ML-based Model Selection

If the more complex model always gives a likelihood that is at least as good as a simpler model, even if the simpler one is true, we need ways to assess whether it's enough better to warrant our attention.

- Akaikés Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

- Likelihood Ratio Test (LRT)

ML-based Model Selection

If the more complex model always gives a likelihood that is at least as good as a simpler model, even if the simpler one is true, we need ways to assess whether it's enough better to warrant our attention.

- Akaikés Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Likelihood Ratio Test (LRT)

ML-based Model Selection

Akaike's Information Criterion (AIC)

Minimum AIC preferred.

$$
\mathrm{AIC}=2 k-2 \ln (\hat{L})
$$

Likelihood term becomes more negative when \hat{L} worse.

ML-based Model Selection

$$
\begin{gathered}
\mathrm{AIC}=2 k-2 \ln (\hat{L}) \\
\mathrm{BIC}=\ln (n) k-2 \ln (\hat{L})
\end{gathered}
$$

ML-based Model Selection

$$
\begin{gathered}
\mathrm{AIC}=2 k-2 \ln (\hat{L}) \\
\mathrm{BIC}=\ln (n) k-2 \ln (\hat{L})
\end{gathered}
$$

Penalty term is larger for BIC when $n>7$

ML-based Model Selection

$$
\begin{gathered}
\mathrm{AIC}=2 k-2 \ln (\hat{L}) \\
\mathrm{BIC}=\ln (n) k-2 \ln (\hat{L})
\end{gathered}
$$

LRT
 Pairwise

 Hypothesis test

Likelihood Ratio Test - Hierarchy of Nestedness

Likelihood Model Selection

- Strength of penalty for adding extra parameters varies
- often BIC > AIC > LRT

Bayesian Model Selection

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

Bayesian Model Selection

$$
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)}
$$

$P(\theta \mid D, M)=\frac{P(D \mid \theta, M) P(\theta \mid M)}{P(D \mid M)}$

Bayesian Model Selection

$$
\begin{gathered}
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \\
P(\theta \mid D, M)=\frac{P(D \mid \theta, M) P(\theta \mid M)}{\int P(D \mid \theta, M) P(\theta \mid M) d \theta} \\
\text { Marginal Likelihood }
\end{gathered}
$$

Probability of the data given the model, considering uncertainty in model parameters.

Bayesian Model Selection

$$
\begin{gathered}
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \\
P(\theta \mid D, M)=\frac{P(D \mid \theta, M) P(\theta \mid M)}{\int P(D \mid \theta, M) P(\theta \mid M) d \theta} \\
\text { Marginal Likelihood }
\end{gathered}
$$

Essentially, the weighted average likelihood, weighted by the prior probability of different parameter values.

Marginal Likelihood Example

Evolutionary Distance

Sp.A $=$ Sp. B

 Compare JC and K80 models

 Compare JC and K80 models}

v: edge length estimated in both models

k: transition-transversion ratio estimated in K80 and fixed at 1 for JC

Marginal Likelihood Example

Marginal Likelihood Example

Marginal Likelihood Example

Simulation Conditions Sequence length: 500 bp

True v: 0.15
True k: 1.0

Prior is flat over whole area.
K80 (whole 2D plane)

JC (just 1D line)

Marginal Likelihood Example

Simulation Conditions Sequence length: 500 bp

True v: 0.15
True k: 1.0

Prior is flat over whole area.
K80 (whole 2D plane)

JC (just 1D line)

Marginal Likelihood Example

Important contrast with ML-based model selection: by marginalizing, rather than maximizing, marginal likelihoods automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.

Marginal Likelihood Example

Important contrast with ML-based model selection: by marginalizing, rather than maximizing, marginal likelihoods automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.
But how can we estimate them?

Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior

Likelihood

Take average of blue dots

Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Take average of blue dots

Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior

Prior
Likelihood

Take average of blue dots??!!
Wéd like to make sure wére sampling high likelihood parts of space with reasonable frequency.

Calculating Marginal Likelihoods

Less-Naive Approach 2-Sample from the posterior

Prior
Posterior (~Likelihood)

Since wére supposed to be integrating across the prior, we need to correct for the fact that our samples are from the posterior.

Calculating Marginal Likelihoods

Less-Naive Approach 2-Sample from the posterior

The Harmonic Mean Method

$$
\frac{1}{M L}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\ldots+\frac{1}{L_{3}}
$$

What's an important property of harmonic means?

Anyone remember discussing bottlenecks in pop gen?

Calculating Marginal Likelihoods

Less-Naive Approach 2-Sample from the posterior

The reverse problem to our first naive approach!

Rarely sampled low likelihoods have a big influence on estimates.

Very unstable.

Calculating Marginal Likelihoods

Approach 3 - Sample from a series of distributions
Steppingstone or path sampling

Steppingstone Sampling

Steppingstone Sampling

 under the curve of interest.

Unfortunately, not many! As before, this is unstable.

Unnormalized Posterior $\longrightarrow P(D \mid \theta) P(\theta)$

Steppingstone Sampling

$$
P(D)
$$

Let's try it in steps!

Sample from this distribution
See what fraction of samples are under this curve

That fraction is an estimate of this ratio

Power Posteriors

$$
\begin{aligned}
& { }^{P(D)}
\end{aligned}
$$

Posterior
Prior
$\beta=1$
$\beta=0$

$$
P(D \mid \theta)_{\beta} \propto P(D \mid \theta)^{\beta} P(\theta)
$$

Power Posteriors

$C_{1.0}$ $=$ Stable estimate of marginal likelihood! $C_{0.0}$

But it requires a specific type of analysis, independent of standard MCMC.

Bayesian Model Selection

$$
\begin{gathered}
P(\theta \mid D)=\frac{P(D \mid \theta) P(\theta)}{P(D)} \\
P(\theta \mid D, M)=\frac{P(D \mid \theta, M) P(\theta \mid M)}{\int P(D \mid \theta, M) P(\theta \mid M) d \theta} \\
\text { Marginal Likelihood }
\end{gathered}
$$

Essentially, the weighted average likelihood, weighted by the prior probability of different parameter values.

The Bayes Factor

$$
K=\frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}=\frac{\int P\left(D \mid \theta, M_{1}\right) P\left(\theta \mid M_{1}\right) d \theta}{\int P\left(D \mid \theta, M_{2}\right) P\left(\theta \mid M_{2}\right) d \theta}
$$

Ratio of the probability of the data under two models

The Bayes Factor

$$
K=\frac{P\left(D \mid M_{1}\right)}{P\left(D \mid M_{2}\right)}=\frac{\int P\left(D \mid \theta, M_{1}\right) P\left(\theta \mid M_{1}\right) d \theta}{\int P\left(D \mid \theta, M_{2}\right) P\left(\theta \mid M_{2}\right) d \theta}
$$

Ratio of the probability of the data under two models Note that this is related to the Likelihood ratio test

Bayes Factors

2ln(BF)	BF	Strength of evidence
$0-2$	$1-3$	Barely worth mentioning.
$2-6$	$3-20$	Positive
$6-10$	$20-150$	Strong
>10	>150	Very Strong

Bayes Factors

For now, we're going to use these to compare different models of sequence evolution as our hypotheses.

However, BFs can also be used for other hypotheses, like partition models (later), topological relationships, and much more.

Or...don't choose a mode!!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump between them. Integrate out uncertainty about which model is best. This is a Bayesian form of model averaging.

We already do this for trees. Can also do this for models.

Or...don't choose a mode!!

Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump between them. Integrate out uncertainty about which model is best. This is a Bayesian form of model averaging.

We already do this for trees. Can also do this for models.
*Disclaimer: Setting up proper reversible jump moves can often be very challenging.

