Bayesian Phylogenetic Inference using RevBayes:

Diversification Rate Estimation

Sebastian Höhna \& Mike May

GeoBio-Center
Ludwig-Maximilians Universität, München

Patterns of diversification

- adaptive radiation

Hawaiian silverswords

Patterns of diversification

- adaptive radiation
- key innovation

Nectar spurs in columbines

Patterns of diversification

- adaptive radiation
- key innovation
- diversity dependence

Global deceleration in birds

Patterns of diversification

- adaptive radiation
- key innovation
- diversity dependence
- mass extinction

K-Pg bolide impact

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation among lineages correlated with some biotic factor?

A brief history

Number of species

Birth-death process

Phylogenetic trees

Reconstructed process

1924, Yule

1948/1949, Kendall

1975, Thompson

1994, Nee et al

Birth-Death Process

Origin (single species)

Birth-Death Process

Birth-Death Process

Speciation Event

Birth-Death Process

Birth-Death Process

Complete Tree

Birth-Death Process

Birth-Death Process

Reconstructed Tree

Birth-Death Process

Complete Tree

Reconstructed Tree
b)

- A species gives birth to exactly one new species with rate $\lambda(t)$
- A species dies with rate $\boldsymbol{\mu}(\mathrm{t})$
- Only extant species can be observed/sampled.

Simple pure-birth (Yule) model

Pure-birth (Yule) model with prior

Simple Birth-Death Model

Birth-Death Model with Prior

Parameterization and interpretation

1)

Speciation rate
Extinction rate

Net-diversification rate:
$\lambda-\mu$
Turnover rate

Net-diversification rate:
$\lambda-\mu$
Relative extinction rate
$\frac{\mu}{\lambda}$

Speciation rate
Relative extinction rate

λ

 μ2) μ
$\frac{\mu}{\lambda}$

Parameterization and interpretation

Speciation rate
Extinction rate
λ
μ

+ Natural parameterization of the birth-death process
- Extinction rate might be larger than speciation rate
- Difficult to estimate parameters

Parameterization and interpretation

Net-diversification rate: $\quad \lambda-\mu$
Turnover rate
μ

+ Good prior information about net-diversification:

$$
E[\lambda-\mu]=\ln \left(\frac{N}{2}\right) / T
$$

+ Extinction rate can be enforced to be smaller than speciation
+ Biological interpretation of turnover rate

Parameterization and interpretation

Net-diversification rate: $\quad \lambda-\mu$
Relative extinction rate $\frac{\mu}{\lambda}$

+ Good prior information about net-diversification:

$$
E[\lambda-\mu]=\ln \left(\frac{N}{2}\right) / T
$$

+ Extinction rate can be enforced to be smaller than speciation
+ Simple prior on turnover rate (Beta distribution)
- Weird induced priors on parameters

Parameterization and interpretation

Speciation rate
Relative extinction rate
λ
$\frac{\mu}{\lambda}$

+ Extinction rate can be enforced to be smaller than speciation
+ Simple prior on turnover rate (Beta distribution)
- Difficult to specify prior on speciation rate

Exercise 1: Simple Diversification Rate Estimation

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation among lineages correlated with some biotic factor?

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation among lineages correlated with some biotic factor?

Example: Diversification in Apollo Butterflies

Condamine et al., 2018, Systematic Biology

b)
c)

Probability density of a reconstructed tree:

$$
\begin{array}{rr}
f(\Psi)=\begin{array}{rr}
\frac{2^{N-1}}{N!} \times & \text { (i) the probability of the tree topology } \\
\rho^{N} \times & \text { (ii) the probability of sampling the extant taxa }
\end{array} \\
\prod_{t \in \mathcal{N}}[\lambda(t)] \times & \text { (iii) the probability of a speciation event } \\
& \prod_{t \in \mathcal{B}}\left[\frac{D\left(t_{o}\right)}{D\left(t_{y}\right)}\right]
\end{array}
$$

Theory: Computing the Probability of

(I)
\odot

(i) extinction event
(ii) no event
(iii) speciation event

$$
\frac{d E}{d t}=\mu(t)-(\lambda(t)+\mu(t)) E(t)+\lambda(t) E(t)^{2}
$$

b)
c)

Probability density of a reconstructed tree:
$f(\Psi)=\frac{2^{N-1}}{N!} \times$
(i) the probability of the tree topology
$\rho^{N} \times$
(ii) the probability of sampling the extant taxa

$$
\begin{array}{ll}
\prod_{t \in \mathcal{N}}[\lambda(t)] \times & \text { (iii) the probability of a speciation event } \\
\prod_{t \in \mathcal{B}}\left[\frac{D\left(t_{o}\right)}{D\left(t_{y}\right)}\right] & \text { (iv) the probability of each branch-segment }
\end{array}
$$

Differential equations:

$$
\begin{aligned}
& \frac{d E}{d t}=\mu(t)-(\lambda(t)+\mu(t)) E(t)+\lambda(t) E(t)^{2} \\
& \frac{d D}{d t}=-D(t)(\lambda(t)+\mu(t))+2 D(t) \lambda(t) E(t)
\end{aligned}
$$

Analytical solutions:

$$
\begin{aligned}
E_{i}(t) & =\frac{\lambda_{i}+\mu_{i}-A_{i} \frac{1+B_{i}-e^{-A_{i}\left(t-s_{i}\right)\left(1-B_{i}\right)}}{1++_{i}+e^{-A_{i}\left(t-s_{i}\right)\left(1-B_{i}\right)}}}{2 \lambda_{i}} \\
D_{i}(t) & =\frac{4 e^{-A_{i}\left(t-s_{i}\right)}}{\left(1+B_{i}+e^{-A_{i}\left(t-s_{i}\right)}\left(1-B_{i}\right)\right)^{2}} \\
A_{i} & =\sqrt{\left(\lambda_{i}-\mu_{i}\right)^{2}+\left(4 \times \lambda_{i}\right)} \\
B_{i} & =\frac{\left(1-2 E_{i-1}\left(s_{i}\right)\right) \lambda_{i}+\mu_{i}}{A_{i}}
\end{aligned}
$$

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation through time correlated with some biotic factor?

Example: Diversification in Apollo Butterflies

Condamine et al., 2018, Systematic Biology

Hypothesis: CO_{2} is correlated with diversification rate

Asteraceae is one of the largest (plant) families: >23,000 species.
Very few fossils from the Cretaceous known.
Diversity increased rapidly about 20-25 Mya.

Estimated dated super tree with ~2200 species.
Only 10% of taxa sampled.

Incomplete taxon sampling

Complete taxon sampling:
All extant taxa are included.

Incomplete taxon sampling

Complete

Uniform
c)

Uniform taxon sampling:
Each extant taxon has the same probability to be included.

Incomplete taxon sampling

Diversified taxon sampling:
Only one taxon per group (e.g., genus) is included.

Incomplete taxon sampling

Incomplete taxon sampling biases diversification rate estimate!

Höhna et al. (2011, MBE), Höhna (2014, PLoS one)

Uniform Sampling

We know how many species belong to each group!

 used to inform diversification rate estimates.

Palazzesi, Hidalgo, Barreda, Forest \& Höhna (in review)

Empirical taxon sampling

Uniform Sampling
speciation rate

extinction rate

Empirical Sampling

Palazzesi, Hidalgo, Barreda, Forest \& Höhna (in prep)

Palazzesi, Hidalgo, Barreda, Forest \& Höhna (in review)

$$
\begin{aligned}
& \lambda=\alpha_{\lambda}+\beta_{\lambda} * \mathrm{CO}_{2}+\epsilon_{\lambda} \\
& \mu=\alpha_{\mu}+\beta_{\mu} * \mathrm{CO}_{2}+\epsilon_{\mu}
\end{aligned}
$$

$$
\alpha=\quad \text { background rate }
$$

$$
\beta=\text { regression slope }
$$

$$
\epsilon=\text { residual }
$$

Palazzesi, Hidalgo, Barreda, Forest \& Höhna (in review)

$$
\begin{aligned}
& \lambda=\alpha_{\lambda}+\beta_{\lambda} * \mathrm{CO}_{2}+\epsilon_{\lambda} \\
& \mu=\alpha_{\mu}+\beta_{\mu} * \mathrm{CO}_{2}+\epsilon_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=\alpha_{\lambda}+\beta_{\lambda} * \mathrm{CO}_{2}+\epsilon_{\lambda} \\
& \mu=\alpha_{\mu}+\beta_{\mu} * \mathrm{CO}_{2}+\epsilon_{\mu}
\end{aligned}
$$

Palazzesi, Hidalgo, Barreda, Forest \& Höhna (in prep)

Mass-extinction events

Mass-extinction events are:

- short periods of time with high extinction
- $50-75 \%$ of genera go extinct
- around 90% of species diversity goes extinction

Modeling mass extinction

event

Mass-extinction events can be modeled by:
a) a short period of time with high extinction
b) an explicit mass-extinction event with a given survival probability
using explicit mass extinction and biologically informed priors we can distinguish between background rate variation and mass extinctions

Höhna (2015, JTB), May, Höhna \& Moore (2016, MEE)

Example: Inference of mass-extinction events in

Bayes factor: $\frac{\text { posterior mass extinction }}{\text { posterior no mass extinction }} \div \frac{\text { prior mass extinction }}{\text { prior no mass extinction }}$

May, Höhna \& Moore (2016, MEE)

- Conifers were impacted by a mass extinction about 23 Mya
- Daisies and grasses increased in diversity about 20 Mya
- Diversification rates in daisies are linked to CO2

Exercise 2: Episodic Diversification Rate Estimation

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation among lineages correlated with some biotic factor?

Example: Diversification in Apollo Butterflies

Theory: Computing the Probability of

(1)

$$
\begin{aligned}
E_{i}(t+\Delta t) & =\mu_{i} \Delta t \\
& +\left[1-\mu_{i} \Delta t-\lambda_{i} \Delta t-\sum_{i \neq j}\left(q_{i j} \Delta t\right)\right] E_{i}(t)
\end{aligned}
$$

(i) extinction
(ii) no event

$$
+\left[1-\mu_{i} \Delta t-\lambda_{i} \Delta t\right] \times \sum_{i \neq j}\left(q_{i j} \Delta t E_{j}(t)\right) \quad \text { (iii) a state change event }
$$

$$
+\left[1-\mu_{i} \Delta t-\sum_{i \neq j}\left(q_{i j} \Delta t\right)\right] \lambda_{i} \Delta t E_{i}(t)^{2} \quad \text { (iv) a speciation event }
$$

Branch-Specific Diversification

Lineages / clades have heterogeneous diversification rates.

Locations of shifts are defined a priori (prior hypothesis) or estimated.
A) the complete process

B) the reconstructed process

Full tree vs reconstructed tree

b)

Data Augmentation

Modeling Challenges

A) actual process

(process may vary on extinct lineages)

B) described process
(extinct lineages inherit ancestral process)

C) implemented process
(extinct lineages laterally inherit the process of the left but not the right observed branch)

Percentage of trees with rate shifts at extinct

Branch-specific likelihood in RevBayes

A) Scenarios for observed lineages

i. no speciation
B) Scenarios for unobserved lineages

i. no rate shift, no speciation, extinction

ii. no rate shift, no speciation, subsequent extinction

iii. speciation right branch, subsequent extinction

iii. no rate shift, speciation, subsequent extinctions

iv. rate shift, no speciation, subsequent extinction

The Finite Rate Category Model

We assume an underlying birth-death-shift model:

1. Species i speciates with a given speciation rate λ_{i}. Both descendant species inherit the speciation and extinction rates.
2. Species i dies with a given extinction rate $\boldsymbol{\mu}_{i}$.
3. Species i changes to new speciation and extinction rates which are drawn from the discrete prior distribution.

- We allow for extinction events to occur on extinct lineages too!
- We can calculate the probability of the tree numerically (slow).
- This is a corrected version of the BAMM model.

The Finite Rate Category Model

Assume there are only N
discrete rate categories.

Approximate continuous distribution by N quantiles of distribution (discretization).

Exercise 3: Branch-specific Diversification Rate Estimation

1) Estimating constant rates of speciation and extinction

- What are the speciation and extinction rates for my study group?

2) Estimating time-varying rates of speciation and extinction

- Do speciation and extinction rates vary through time?
- Is this variation through time correlated with some abiotic factor?

3) Estimating branch-specific rates of speciation and extinction

- Do speciation and extinction rates vary among lineages?
- Is this variation among lineages correlated with some biotic factor?

Example: Diversification in Apollo Butterflies

Speciation/extinction rates are dependent on character state.

Character states are only observed at tips.

Joint model of diversification and character evolution.

Example: Diversification in Apollo Butterflies

b) Estimated speciation rates on host plants

Condamine et al., 2018, Systematic Biology

Binary State Speciation \& Extinction (BiSSE)

speciation
extinction $\lambda_{0}^{2} \underset{\mu_{0}}{\substack{q_{10}}} \overbrace{1}^{\lambda_{1}}$ extinction
transition

Hypothesis: Invasiveness of placenta is correlated with speciation rate

Placenta Types:

Model:

Diversification rates
depend on placenta type:

$$
\begin{aligned}
& \left\{\lambda_{1}, \mu_{1}\right\} \\
& \left\{\lambda_{2}, \mu_{2}\right\} \\
& \left\{\lambda_{3}, \mu_{3}\right\}
\end{aligned}
$$

Hypothesis: Invasiveness of placenta is correlated with speciation rate

Placenta Types:

Furness, Freyman, Springer \& Höhna (in prep)

Ancestral State Estimation

Placenta Types:

Model:

Furness, Freyman, Springer \& Höhna (in prep)

Diversification Rate Estimation

Placenta Types:

1
Epitheliochorial

Cow, pig, horse

2
Endotheliochorial

Model:

Net-Diversification

Problems with the BiSSE/MuSSE models

Problems:

1. Speciation and extinction rate changes ALWAYS coincide with discrete character (morphology) changes.
2. What if there are rate changes that are uncorrelated with the observed character?
3. Leads to high false-positive rate (Rabosky \& Goldberg, 2015).

Solution:

1. Add an unobserved (hidden) character (Beaulieu \& O'Meara, 2016).
2. Rate shifts might be correlated with the observed character, the unobserved character, or both.

Diversification Rate Estimation

Placenta Types:

1

2
Endotheliochorial

Model:

Net-Diversification

Binary State Speciation \& Extinction (BiSSE)

speciation
extinction $\lambda_{0}^{2} \underset{\mu_{0}}{\substack{q_{10}}} \overbrace{1}^{\lambda_{1}}$ extinction
transition

Hidden State Speciation \& Extinction (HiSSE)

speciation

Extensions: ChromoSSE

Duplication

Cladogenetic change

Carex (Sedges)
Freyman \& Höhna (Systematic Biology, 2018)

Extensions: Stochastic Character Mapping

Is self-compatibility an evolutionary dead-end?

Stochastic Character Mapping reveals a shortterm evolutionary advantage followed by a decline (negative netdiversification).

Freyman \& Höhna (Systematic Biology, 2019)

Exercise 4: State-dependent Diversification Rate Estimation

