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f(✓i | X) =
f(X | ✓i)f(✓i)PN

j=1 f(X | ✓j)f(✓j)

Pr(B!A) Pr(A)
Pr(B)

Pr(A!B) =

Bayes Theorem

Bayesian Inference

posterior probability likelihood function prior probability

marginal likelihood

The posterior probability of observing A given that B has occurred, Pr(A!B), is  
     proportional to the product of the conditional probability of Pr(A!B) and the 
     unconditional probability of A, Pr(A).
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Pr(A!B) =

Bayes Theorem

Bayesian Inference

posterior probability

The posterior probability of observing A given that B has occurred, Pr(A!B), is  
     proportional to the product of the conditional probability of Pr(A!B) and the 
     unconditional probability of A, Pr(A).

marginal likelihood
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f(X | ✓i)f(✓i)R
✓ f(X | ✓)f(✓)d✓



1. Tree

II. Phylogenetic model parameters
topology

€ 

τ = τ1,τ2,...,τ(2s−5)!!( ) !
branch lengths

€ 

ν = ν1,ν2,...,ν(2S−3)( ) !

relative substitution rates

€ 

θ = θAC ,θAG ,θAT ,θCG,θCT ,θGT( )!
2. Model of character change

€ 

Φ = θ,π,α,T( ) !

stationary frequencies

€ 

π = π A ,πC ,πG,πT( )!

III. Phylogenetic likelihood function

IV. Priors on parameters
~Uniform
~Dirichlet (1,...,1)

~Dirichlet (1,1,1,1)

V. Posterior Probability

~Dirichlet (1,1,1,1,1,1)

f(Parameter | Data) =
f(Data | Parameter)f(Parameter)

f(Data)

f(⌧, ⌫,� | X) =
f(X | ⌧, ⌫,�)f(⌧, ⌫,�)

f(X)

Bayesian Inference of Phylogeny (on one slide)

Assume an alignment, X, of N sites for S species:

I. Data
X = (x1, x2, x3, . . . , xN )
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Pr[Accept] = new height 
                       old height�

2. If the proposed step will take the robot downhill, it divides the elevation of 
    the proposed location by the current location, and it only takes the step if the 
    quotient is less than a uniform random variable, Uniform[0,1] 

1. If the proposed step will take the robot uphill, it automatically takes the step

Approximating the Joint Posterior Probability Density 
using MCMC 

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density 
and will explore parameter space by following these simple rules:

Metropolis et al. (1953); Hastings (1970)

< U step
> U stay



2. If the proposed step will take the robot downhill, it divides the elevation of 
    the proposed location by the current location, and it only takes the step if the 
    quotient is less than a uniform random variable, Uniform[0,1] 

3. The proposal distribution is symmetrical, so Pr[A     B] = Pr[B     A]�

1. If the proposed step will take the robot uphill, it automatically takes the step

Approximating the Joint Posterior Probability Density 
using MCMC 

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density 
and will explore parameter space by following these simple rules:

Metropolis et al. (1953); Hastings (1970)



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=1.0)
er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=1.0)
alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=1.0)

parameter
prior distribution proposal  

weights

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

Metropolis et al. (1953); Hastings (1970)



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=2.0)
er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=2.0)
alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=2.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 96 
moves per iteration

parameter
prior distribution proposal  

weights

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

Metropolis et al. (1953); Hastings (1970)



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=4.0)
er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=4.0)
alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=4.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 192 
moves per iteration

parameter
prior distribution proposal  

weights

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

Metropolis et al. (1953); Hastings (1970)



R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓) · f(✓|✓0)

f(✓0|✓)

i

4. Calculate the probability of accepting the proposed change:

likelihood ratio prior ratio proposal ratio 

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

Metropolis et al. (1953); Hastings (1970)

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)



R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓) · f(✓|✓0)

f(✓0|✓)

i

4. Calculate the probability of accepting the proposed change:

likelihood ratio prior ratio proposal ratio 

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

Metropolis et al. (1953); Hastings (1970)

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)

• How do we calculate the likelihood for a given parameter value,       ?✓, ✓0



Then we need to repeat the entire process for  
each of the more inclusive nodes toward the root,  
where the conditional likelihoods of the tips are first  
recorded... 

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

L (Anc)
i =

 
X

j2(A,C,G,T)

pij(⌫L)L
(L)
j

!
⇥
 

X

k2(A,C,G,T)

pik(⌫R)L
(R)
k

!



4. Calculate the probability of accepting the proposed change:

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

Metropolis et al. (1953); Hastings (1970)

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)

• How do we calculate the prior probability for a given parameter value,       ?✓, ✓0

R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓) · f(✓|✓0)

f(✓0|✓)

i

likelihood ratio prior ratio proposal ratio 



The prior for each parameter is specified

��"��/���	�.������Approximating the Joint Posterior Probability Density 
using MCMC 

We can just look up the prior probability of a given parameter value      .✓, ✓0

✓0

f(✓)



4. Calculate the probability of accepting the proposed change:

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

Metropolis et al. (1953); Hastings (1970)

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)

R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓)

i
posterior probability of 
current state

posterior probability of 
proposed state

• i.e., we decide how to explore the posterior probability density based on the ratio  
of the posterior probabilities of the current and proposed parameter values,✓, ✓0



6. Repeat steps 2–5 an ‘adequate’ number of times

5. Generate a uniform random variable, U[0,1], accept if R > U

4. Calculate the probability of accepting the proposed change, R

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

Metropolis et al. (1953); Hastings (1970)

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)



Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓) · f(✓|✓0)

f(✓0|✓)

i

✓
Pr

ob
ab

ili
ty ✓0

✓

= 0.1

= 0.05

proposal  
ratio 

likelihood  
ratio 

prior  
ratio 



Approximating the Joint Posterior Probability Density 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The Metropolis-Hastings algorithm

✓
Pr

ob
ab

ili
ty ✓0

✓

= 0.1

= 0.05

posterior  
ratio 

R = min
h
1, f(✓0| X)

f(✓| X)

i



Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

✓
Pr

ob
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ty ✓0

✓

= 0.1

= 0.05

R = min
h
1, f(X|✓0)

f(X)|✓)

i
= 0.1

0.05R = min
h
1, f(✓0| X)

f(✓| X)

i



Accept

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

Pr
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ty

✓

R = min
h
1, f(X|✓0)

f(X)|✓)

i
= 0.1

0.05

0 1
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U

✓ = 0.1

R = min
h
1, f(✓0| X)

f(✓| X)

i



Accept Reject

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm
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✓
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U

✓ = 0.1

= 0.05✓0

R = min
h
1, f(X|✓0)

f(X)|✓)

i
= 0.05

0.1 = 0.5R = min
h
1, f(✓0| X)

f(✓| X)

i



RejectAccept

Approximating the Joint Posterior Probability Density 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The Metropolis-Hastings algorithm

Pr
ob

ab
ili

ty

✓

0 1
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U

✓ = 0.1

= 0.025✓0

R = min
h
1, f(X|✓0)

f(X)|✓)

i
= 0.025

0.1 = 0.25R = min
h
1, f(✓0| X)

f(✓| X)

i



Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

Metropolis et al. (1953); Hastings (1970)

6. Repeat steps 2–5 an ‘adequate’ number of times

5. Generate a uniform random variable, U[0,1], accept if R > U

4. Calculate the probability of accepting the proposed change, R

2. Select a parameter to update (alter) according to the proposal probabilities

• each prior probability distribution has one or more proposal mechanisms

3. Propose a new value,    , for the selected parameter via the proposal mechanism:✓0

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths, ✓ = {⌧, ⌫,�}

• each parameter has a prior probability distribution of a specific form (uniform, etc.)



pi ~ dnDirichlet(pi_prior)
moves[++mi] = mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=2.0)

Approximating the Joint Posterior Probability Density 
using MCMC 

Dirichlet proposal mechanism

(657#+.%(=()5,G,%#'%(

Propose a new value for a parameter with a Dirichlet prior probability density
• the proposal density is controlled by the tuning parameter, 
• when    is large, smaller changes will be proposed

current parameter value
✓

↵
↵

• when    is small, larger changes will be proposed↵



Approximating the Joint Posterior Probability Density 
using MCMC 

Propose a new value for a parameter with a uniform prior probability density
• the proposal density is controlled by the tuning parameter, 
• when    is large, larger changes will be proposed

current parameter value
✓

• when    is small, smaller changes will be proposed

(657#+.%(=()5,G,%#'%(

�
�

�

epsilon ~ dnUnif( epsilon_prior_min, epsilon_prior_max )
moves[++mi] = mvSlide(epsilon, delta=0.8, tune=true, weight=3.0)

Sliding-window proposal mechanism



(657#+.%(=()5,G,%#'%(
Approximating the Joint Posterior Probability Density 

using MCMC 

Propose a new value for a parameter with a exponential prior probability density
• the proposal density is controlled by the tuning parameter, 
• when    is large, larger changes will be proposed

current parameter value
✓

• when    is small, smaller changes will be proposed

Multiplier proposal mechanism

br_lens[i] ~ dnExponential(10.0)
moves[++mi] = mvScale(br_lens[i],lambda=1,tune=true,weight=1)

� = 2lna

✓/a ✓a

�

�
Equivalent to sliding-window proposal with log-transformed x axis
Works well when changes to small parameter values have a larger impact on   
     probability of data than changes in large parameter values
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Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

    temperature
chain 0.25 0.20 0.15 0.10

0 1.00 1.00 1.00 1.00
1 0.80 0.83 0.87 0.91
2 0.67 0.71 0.77 0.83
3 0.57 0.63 0.69 0.77

�• posterior of chain i is raised to a power,    : the heat of chain i = 1/(1 + iT)�i

�3 = 1/(1 + 3 · 0.25)
�2 = 1/(1 + 2 · 0.25)
�1 = 1/(1 + 1 · 0.25)
�0 = 1/(1 + 0 · 0.25)

• the incremental heating successively ‘flattens’ the posterior visited by each chain by 
making the acceptance probability of the ith chain more ‘permissive’:

Ri = min
h
1,
⇣

f(X|✓0)
f(X|✓) · f(✓0)

f(✓)

⌘�i

· f(✓|✓0)
f(✓0|✓)

i

• the degree of incremental heating is controlled by the temperature parameter, T.

• this allows heated chains to more readily traverse regions of low probability.

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

    temperature
chain 0.25 0.20 0.15 0.10

0 1.00 1.00 1.00 1.00
1 0.80 0.83 0.87 0.91
2 0.67 0.71 0.77 0.83
3 0.57 0.63 0.69 0.77

�• posterior of chain i is raised to a power,    : the heat of chain i = 1/(1 + iT)�i

• the incremental heating successively ‘flattens’ the posterior visited by each chain by 
making the acceptance probability of the ith chain more ‘permissive’:

Ri = min
h
1,
⇣

f(X|✓0)
f(X|✓) · f(✓0)

f(✓)

⌘�i

· f(✓|✓0)
f(✓0|✓)

i

• the degree of incremental heating is controlled by the temperature parameter, T.

• this allows heated chains to more readily traverse regions of low probability.

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

    temperature
chain 0.25 0.20 0.15 0.10

0 1.00 1.00 1.00 1.00
1 0.80 0.83 0.87 0.91
2 0.67 0.71 0.77 0.83
3 0.57 0.63 0.69 0.77

�• posterior of chain i is raised to a power,    : the heat of chain i = 1/(1 + iT)�i

• the incremental heating successively ‘flattens’ the posterior visited by each chain by 
making the acceptance probability of the ith chain more ‘permissive’:

Ri = min
h
1,
⇣

f(X|✓0)
f(X|✓) · f(✓0)

f(✓)

⌘�i

· f(✓|✓0)
f(✓0|✓)

i

• the degree of incremental heating is controlled by the temperature parameter, T.

• this allows heated chains to more readily traverse regions of low probability.

cold chain

• samples are only collected by the ‘cold’ chain (i.e., the undistorted posterior).

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

chain 0 (   = 1.00)�

chain 1 (   = 0.83)�

chain 2 (   = 0.71)�

chain 3 (   = 0.63)�

• posterior of chain i is raised to a power,    : the heat of chain i = 1/(1 + iT)�i

• heated chains to more readily traverse regions of low probability

• the cold chain samples the true posterior, whereas the heated chains sample 
successively ‘flattened’ distortions of the posterior

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

3. At prescribed intervals, two chains are randomly selected to swap.

chain 0 (   = 1.00)�

chain 1 (   = 0.83)�

chain 2 (   = 0.71)�

chain 3 (   = 0.63)�

• we compute the acceptance probability of swapping the two chains. 

R = min
h
1, f(✓k|X)�j f(✓j |X)�k

f(✓j |X)�j f(✓k|X)�k

i

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

3. At prescribed intervals, two chains are randomly selected to swap.

chain 0 (   = 1.00)�

chain 1 (   = 0.83)�

chain 2 (   = 0.71)�

chain 3 (   = 0.63)�

• we compute the acceptance probability of swapping the two chains. 
• if accepted, the chains swap positions (and in computer memory)

2. The chains are incrementally heated, such that the first chain is cold (unmodified).



Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.

3. At prescribed intervals, two chains are randomly selected to swap.

4. Only samples from the cold chain are used to approximate the posterior.

chain 0 (   = 1.00)�

chain 1 (   = 0.83)�

chain 2 (   = 0.71)�

chain 3 (   = 0.63)�

2. The chains are incrementally heated, such that the first chain is cold (unmodified).
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Samples from the MCMC simulation approximate the joint posterior

The frequency of sampled parameter values provides a valid estimate of the  
    posterior probability of that parameter

• e.g., the frequency of a sampled clade provides an estimate of its nodal probability

We can query the joint posterior with respect to any individual parameter of interest:  
    the marginal posterior probability

Approximating the Joint Posterior Probability Density 
using MCMC 



Samples from the MCMC simulation approximate the joint posterior

Approximating the Joint Posterior Probability Density 
using MCMC 

Each row in our log file—with values of all model parameters—is a sample from the  
    joint posterior probability density.



Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

Each column in our log file—with values for a single model parameter—is a sample 
    from the marginal posterior probability density.



Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can query the joint distribution marginally with respect to any parameter.



Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can do this by simply constructed a histogram for any column in the file 
    this provides an estimate of its marginal posterior probability density
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Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can do this by simply constructed a histogram for any column in the file 
    this provides an estimate of its marginal posterior probability density
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Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can easily summarize aspects of the marginal posterior probability density: 
    e.g., to summarize the 95% credible interval.
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Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can easily summarize aspects of the marginal posterior probability density: 
    e.g., or the probability within some arbitrary interval of interest (0.6–0.8).
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Q. When do we know that the MCMC provides an accurate approximation 
    for a given empirical analysis?

�!�!
�
A.

Approximating the Joint Posterior Probability Density 
using MCMC 

MCMC in theory and practice

an appropriately constructed and adequately run chain is guaranteed to 
provide an arbitrarily precise description of the joint stationary density 

MCMC in theory...

although a given sampler may work well in most cases, all samplers will fail in 
some cases, and is not guaranteed to work for any particular case 

MCMC in practice...
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BE HERE

WE 
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HERE

I’LL 
BE  

HERE

MCMC performance

It is not sufficient to merely be deeply concerned about MCMC performance... 
     you need to be completely obsessed about it!

for any Bayesian inference based on MCMC 
particularly for complex models/inference problems 

careless careful paranoid

Approximating the Joint Posterior Probability Density 
using MCMC 



WE 
SHOULD  
BE HERE

WE 
ARE  

HERE


�
�����.���������������

"� ���������������������"������������� ��/��
	��/������� ../�/������������"���������"�������������� ��
�
��
���.�������	 	 	 

.�����"���"��/���/�.����������������
�
��

����/� ����"�.���������!��������/�.����������������

J. Am. Stat. Soc. (1996)

…under simulation, all MCMC diagnostics may fail to detect the exact problems that they 
were specifically designed to identify…
…therefore, it is critical to use a combination of tools to detect MCMC failure

Approximating the Joint Posterior Probability Density 
using MCMC 
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1. Convergence

Has the chain (robot) successfully targeted the stationary distribution? 

Assessing MCMC Performance: 
Three Main Issues

2. Mixing

Is the chain (robot) efficiently integrating over the joint posterior probability?

3. Sampling intensity

Have we collected enough samples to adequately describe the posterior 
    probability distribution?



Assessing MCMC Performance: 
Based on Single Chains

1. Convergence diagnostics 

Time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  some parameters are more reliable than others
•  steps may occur!
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Assessing MCMC Performance: 
Based on Single Chains

Example: Tracer plots of tree-length at two stages of a single MrBayes run



Assessing MCMC Performance: 
Based on Single Chains

1. Convergence diagnostics 

Time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  some parameters are more reliable than others
•  steps may occur!

Discrete parameters (e.g., bi-partitions)
•  some parameters are more reliable than others
•  steps may occur!



bad convergence better convergence

Assessing MCMC Performance: 
Based on Single Chains

Example: AWTY plots of cumulative bi-partition frequency of 5 nodes

Nylander et al. (2008)



Assessing MCMC Performance: 
Based on Single Chains

1. Convergence diagnostics 

Time-series plots of parameter estimates

Continuous or discrete parameters
•  A test for equality of the means of the first and last part of a Markov chain 

(by default the first 10% and the last 50%)
•  If the samples are drawn from the stationary distribution, the two means 

should equal and Geweke’s statistic has an asymptotically standard 
normal distribution

Geweke (1992)

Geweke diagnostic (coda, BOA)



Assessing MCMC Performance: 
Based on Single Chains

1. Convergence diagnostics 

Time-series plots of parameter estimates
Geweke diagnostic (coda, BOA)

Heidelberg & Welch (1983)

Heidelberg-Welch diagnostic (coda, BOA)
Continuous or discrete parameters
•  uses the Cramer-von Mises statistic to test the null hypothesis that the 

sampled values come from a stationary distribution
•  This test is successively applied, first to the whole chain, then after 

discarding the first 10%, 20%, … of the samples until either the null 
hypothesis is accepted, or 50% of the chain has been discarded 

• The latter outcome constitutes “failure” of the test and indicates that a 
longer run is needed

• Otherwise, the number of iterations to keep and the number to discard 
(burn-in) are reported



Assessing MCMC Performance: 
Based on Single Chains

1. Convergence diagnostics 

Time-series plots of parameter estimates
Geweke diagnostic (coda, BOA)
Heidelberg-Welch diagnostic (coda, BOA)
(many others)



Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Form of the time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  warm and fuzzy caterpillars
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Example: Tracer plots of relative-rate multipliers from two MrBayes runs

Assessing MCMC Performance: 
Based on Single Chains
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Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Form of the time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  warm and fuzzy caterpillars

Acceptance rates of parameter updates
Continuous and discrete parameters (MrBayes, BEAST)
• rates should ideally fall in the ~20–70% range



Acceptance rates for the moves in the "cold" chain of run 1:
         With prob.  Chain accepted changes to
           13.61 %   param. 1 (revmat) with Dirichlet proposal

.

.

.
            0.04 %   param. 34 (rate multiplier) Dirichlet proposal
            6.59 %   param. 35 (topology and branch lengths) TBR
           14.06 %   param. 35 (topology and branch lengths) LOCAL

Acceptance rates for the moves in the "cold" chain of run 1:
         With prob.  Chain accepted changes to
           33.30 %   param. 1 (revmat) with Dirichlet proposal

.

.

.
       19.13 %   param. 34 (rate multiplier) Dirichlet proposal
       17.40 %   param. 35 (topology and branch lengths) TBR 
       29.76 %   param. 35 (topology and branch lengths) LOCAL
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Example: Tracer plots of relative-rate multipliers from two MrBayes runs

Assessing MCMC Performance: 
Based on Single Chains



Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Form of the time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  warm and fuzzy caterpillars

Acceptance rates of parameter updates
Continuous and discrete parameters (MrBayes, BEAST)
• rates should ideally fall in the ~20–70% range
•  acceptance rates can be controlled by varying the scale of the 

   tuning parameters for the relevant proposal mechanisms

•  to increase acceptance rates, decrease scale of tuning parameter  
    (and vice versa)

pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=1.0)

parameter
prior distribution proposal  

weights
tuning  

parameter



Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Form of the time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  warm and fuzzy caterpillars

Acceptance rates of parameter updates
Continuous and discrete parameters (MrBayes, BEAST)
• rates should ideally fall in the ~20–70% range

Form of the marginal posterior probability densities
Continuous parameters (e.g., substitution rates)
• beware of porcupine roadkill!
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Assessing MCMC Performance: 
Based on Single Chains



Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Form of the time-series plots of parameter estimates
Continuous parameters (e.g., substitution rates)
•  warm and fuzzy caterpillars

Acceptance rates of parameter updates
Continuous and discrete parameters (MrBayes, BEAST)
• rates should ideally fall in the ~20–70% range

Form of the marginal posterior probability densities
Continuous parameters (e.g., substitution rates)
• beware of porcupine roadkill!

qualitative 
diagnostics

Autocorrelation time (ACT) of parameter samples
Effective sample size (ACT) of parameter samples

quantitative 
diagnostics



 The lag k autocorrelation     is the correlation every draw and its kth lag:

⇢k =

Pn�k
i=1 (xi � x̄)(xi+k � x̄)Pn

i=1(xi � x̄)2

⇢k

Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Autocorrelation time (ACT) of parameter samples
 The lag (number of cycles) it takes for autocorrelation in parameter values  
     to break down.

We would expect the kth lag autocorrelation to be smaller as k increases  
     (our 1st and 100th draws should be less correlated than our 1st and 2nd draws).

If autocorrelation is still relatively high for higher values of k, this indicates high  
    degree of correlation between our draws and slow mixing.
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Example: Autocorrelation time (ACT) of parameter samples

Assessing MCMC Performance: 
Based on Single Chains



Assessing MCMC Performance: 
Based on Single Chains

2. Mixing diagnostics

Effective Sample Size (ESS) diagnostic
Continuous or discrete parameters
• number of samples/autocorrelation time (ACT)



poor mixing

Example: ESS values for relative-rate multipliers from two RevBayes runs

Assessing MCMC Performance: 
Based on Single Chains



Assessing MCMC Performance: 
Based on Single Chains

3. Sample-size diagnostics

Form of the marginal posterior probability densities
Continuous parameters
• brother of porcupine roadkill
• ensure SAE compliance!



Fr
eq
ue
nc
y

meanRate
2E-4 3E-4 4E-4 5E-4 6E-4 7E-4 8E-4
0

2.5

5

7.5

10

12.5

1M cycles

better sampling

40M cycles

poor sampling

Example: Parameter estimates for mean-rate multipliers from BEAST runs

Assessing MCMC Performance: 
Based on Single Chains

 inadequate chain length/poor mixing
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posterior probability
likelihood function

marginal likelihood

prior probability

Estimating under the prior...

Assessing MCMC Performance: 
Diagnostics Based on the Prior

Marginal posterior densities for parameters are updated versions of the 
     corresponding prior probability densities: they are updated by the  
     information in the data via the likelihood function.

f(⌧, ⌫,� | X) =
f(X | ⌧, ⌫,�)f(⌧, ⌫,�)

f(X)



R = min
h
1, f(X|✓0)

f(X|✓) · f(✓0)
f(✓) · f(✓|✓0)

f(✓0|✓)

i

likelihood ratio prior ratio proposal ratio 

Estimating under the prior...

Assessing MCMC Performance: 
Diagnostics Based on the Prior

Marginal posterior densities for parameters are updated versions of the 
     corresponding prior probability densities: they are updated by the  
     information in the data via the likelihood function.

We can compare the marginal prior densities to their posterior counterparts 
    to help identify weak parameters.

MCMC can be run to target the joint prior probability density either by  
    estimating with no data or by forcing the likelihood function return 1.
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Assessing MCMC Performance: 
Diagnostics Based on the Prior

strong parameterweak parameter

Strong departure of marginal prior and posterior is always good news

Similarity between the marginal prior and posterior may indicate:
• good news (you chose a great prior)

• bad news (no information in your data to estimate the parameter)
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Compare estimates from multiple independent chains

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Form of the marginal posterior densities for all parameters
Continuous parameters
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Example: Tracer plots of marginal densities from multiple RevBayes runs

better convergencebad convergence

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Parameter estimates from replicate independent MCMC analyses should be  
    effectively identical.



Compare estimates from multiple independent chains

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Form of the marginal posterior densities for all parameters
Continuous parameters

 PSRF (Gelman–Rubin) diagnostic
Continuous and discrete parameters

1. Run m ≥ 2 chains of length 2c from overdispersed starting values.

3. Calculate the within-chain and between-chain variance. 

4. Calculate the estimated variance of the parameter as a weighted sum of the within-chain 
    and between-chain variance.

2. Discard the first n draws of each chain.

5. Calculate the PSRF.



                                                   95% Cred. Interval
                                                 ----------------------
      Parameter        Mean        Variance       Lower         Upper         Median       PSRF *
      -------------------------------------------------------------------------------------------
      TL{all}         0.073893      0.000034      0.063000      0.086000      0.074000      1.000
      kappa{2,3}      3.236308      0.366904      2.199024      4.587719      3.190195      1.000
      m{1}            1.285838      0.028345      0.980634      1.630387      1.278161      1.000
      m{2}            1.423906      0.015507      1.182596      1.664627      1.423610      1.000
      m{3}            0.589346      0.005341      0.453175      0.736459      0.587617      1.001
      -------------------------------------------------------------------------------------------

                                                   95% Cred. Interval
                                                 ----------------------
      Parameter        Mean        Variance       Lower         Upper         Median       PSRF *
      -------------------------------------------------------------------------------------------
      TL{all}         4.921609      2.998138      2.836000      7.295000      5.056000      9.084
      kappa{4,5}      3.095696      0.054125      2.667623      3.587024      3.085271      1.000
      alpha{5}        1.006544      0.087721      0.606472      1.738482      0.950093      1.000
      pinvar{1}       0.307396      0.009357      0.095913      0.471070      0.316173      1.000
      m{1}            0.264226      0.009315      0.146502      0.421870      0.244468      5.507
      m{2}            0.040919      0.000227      0.022205      0.065884      0.037425      5.279
      m{3}            2.721453      7.157157      0.039001      5.544253      5.030560     69.564
      m{4}            2.125810      3.568002      0.199137      4.044249      3.917338    150.012
      m{5}            0.188768      0.004373      0.109303      0.295129      0.170624      5.749
      -------------------------------------------------------------------------------------------

Example: PSRF values for relative-rate multipliers from two MrBayes runs

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

bad convergence

better convergence



Compare estimates from multiple independent chains

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Form of the marginal posterior densities for all parameters
Continuous parameters

Continuous and discrete parameters

Comparing independent samples of trees
ASDSF: similarity of trees sampled by paired, independent chains

 PSRF (Gelman–Rubin) diagnostic



0.01

ASDSF

time

Example: ASDSF

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

The overall similarity of the trees sampled by two independent, simultaneous 
   MCMC analyses

Terminate chain when ASDSF < 0.01



Compare estimates from multiple independent chains

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Form of the marginal posterior densities for all parameters
Continuous parameters

Continuous and discrete parameters

Comparing independent samples of trees
ASDSF: similarity of trees sampled by paired, independent chains

split frequencies & presence/absence plots

 PSRF (Gelman–Rubin) diagnostic



Example: split frequencies & presence/absence in AWTY

better convergencebad convergence

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Track the frequency of a single node in trees sampled by two independent chains



Compare estimates from multiple independent chains

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Form of the marginal posterior densities for all parameters
Continuous parameters

Continuous and discrete parameters

Comparing independent samples of trees
ASDSF: similarity of trees sampled by paired, independent chains

split frequencies & presence/absence plots

Compare-tree plots

 PSRF (Gelman–Rubin) diagnostic
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Example: ‘comparetrees’ plot of trees sampled by two MrBayes runs

better convergencebad convergence

Assessing MCMC Performance: 
Diagnostics Based on Multiple Runs

Compare estimates of node probabilities estimated by two independent chains



“You can never be absolutely certain that the MCMC is reliable, you can only identify when  
     something has gone wrong.” Andrew Gelman (hero)

Summary: Some General Strategies  
for Assessing MCMC Performance



1. When do you need to assess MCMC performance?
ALWAYS

2. When should you assess the performance of individual runs? 
ALWAYS

3. Which diagnostics should you use to assess individual runs?
ALL that are relevant for the models/parameters you are estimating under 

4. When is a single run sufficient to assess MCMC performance?
NEVER  

5. When should you estimate under the prior?
WHENEVER POSSIBLE (and be wary of programs where it is not possible) 

Summary: Some General Strategies  
for Assessing MCMC Performance



7. When should you perform multiple independent MCMC runs?
ALWAYS (and be wary of pseudo-independence)

8. Which diagnostics should you use to assess multiple runs?
ALL that are relevant for the models/parameters you are estimating under 

9. How many independent MCMC runs are sufficient?
AS MANY AS POSSIBLE (i.e., as many as you think your data/problem deserve) 

10. How long should you run each MCMC analysis?
AS LONG AS POSSIBLE (i.e., as long as you think your data/problem deserve)

6. When should you use Metropolis-Coupling?
Whenever you cannot be certain that standard MCMC is adequate

i.e., ALWAYS (and be wary of programs where it is not possible) 

Summary: Some General Strategies  
for Assessing MCMC Performance



tools: Tracer (Rambaut and Drummond, 2011), AWTY (Nylander et al., 2008), MrBayes

(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003) and PhyloBayes

(Lartillot et al., 2009). More sophisticated convergence assessment software packages

exist in other research areas, such as CODA (Plummer et al., 2006) and BOA (Smith,

2007), which are freely available but more cumbersome in their usage. Note, BOA uses

the same source code internally as CODA for the convergence assessment methods, thus,

we restrict all further evaluation on CODA. We did not see a single research article of

the 171 we looked at using either one, CODA or BOA. A summary of the convergence

methods implemented in these software packages is given in Table 2.

The aim of the present paper is to evaluate the available convergence assessment

methods, compare them with the currently applied methods and suggest new improved

methods. We start the remainder of this paper with an empirical study from the perspec-

tive of a user of the MCMC algorithm who wants to perform a Bayesian phylogenetic

analysis on some model and data. We analyze an empirical dataset and try to assess

convergence with the methods which we have found in our literature review. Then we

discuss, evaluate and propose convergence assessment methods from the statistical lit-

erature. Additionally, we provide an algorithm that automatically finds the optimal

burnin. We conclude this paper with a short discussion and a recommendation on how

the burnin should be estimated and the convergence should be assessed.

2 Convergence Assessment Methods currently used in

Bayesian Phylogenetic Inference

In our evaluation of the currently used convergence assessment methods we found the

following methods: Manual/visual inspection, split frequencies, potential scale reduction

factor and the ESS. In this section we apply and discuss all four methods on MCMC

output from an empirical dataset. The dataset we use is the Cettiidae dataset with one

mitochondrial gene and three nuclear introns analyzed with the multispecies coalescent

Table 2: Convergence assessment methods implemented in software packages.

Software Manual/visual Split frequencies PSRF ESS Geweke test H-W test S-Stationarity M-Stationarity

AWTY x x - - - - - -
BOA x - x x x x - -
CODA x - x x x x - -
MrBayes - x x x - - - -
PhyloBayes - x - - - - - -
RevBayes x x x x x x x x
Tracer x - - x - - - -

4

Hohna et al. (in prep.)

Software tools are scattered across many programs

Diagnosis is largely manual/by visual inspection

Assessing MCMC Performance: 
Software Tools

Use of the methods is time consuming

Use of the methods is vague and virtual



Bayesian Output Needs Semi-Automated Inspection

Mike May

Semi-automated analysis using diverse diagnostic tools

Generates an automated report (sup. mat.)

Flags suspicious parameters

R package

https://bitbucket.org/mrmay/bonsai/overview

BONSAI

Assessing MCMC Performance: 
Software Tools

May, Hohna and Moore (in prep.)
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2 Posterior numerical parameters

2.1 Summary

There are a total of 15 parameters. They are: Posterior, Likelihood, Prior, TL, er[1], er[2], er[3],
er[4], er[5], er[6], pi[1], pi[2], pi[3], pi[4], pinvar

2.2 Flags

2.2.1 Critical flags

• Run 2: Parameter pi[3] has critically low p-value for Geweke’s diagnostic (p = 0.002)
• Parameters Likelihood and Posterior are strongly correlated (⇢ = 1)
• Parameters TL and Prior are strongly correlated (⇢ = �1)

2.2.2 Major flags

• Run 2: Parameter Prior has very low p-value for Geweke’s diagnostic (p = 0.023)
• Run 2: Parameter TL has very low p-value for Geweke’s diagnostic (p = 0.023)
• Parameters Prior and Posterior are correlated (⇢ = 0.292)
• Parameters TL and Posterior are correlated (⇢ = �0.292)
• Parameters pinvar and Posterior are correlated (⇢ = �0.268)
• Parameters Prior and Likelihood are correlated (⇢ = 0.275)
• Parameters TL and Likelihood are correlated (⇢ = �0.275)
• Parameters pinvar and Likelihood are correlated (⇢ = �0.267)
• Parameters er[4] and er[1] are correlated (⇢ = �0.268)
• Parameters er[4] and er[2] are correlated (⇢ = �0.291)
• Parameters er[5] and er[2] are correlated (⇢ = �0.317)
• Parameters er[5] and er[4] are correlated (⇢ = �0.334)
• Parameters er[6] and er[4] are correlated (⇢ = �0.252)
• Parameters er[6] and er[5] are correlated (⇢ = �0.256)
• Parameters pi[2] and pi[1] are correlated (⇢ = �0.34)
• Parameters pi[3] and pi[1] are correlated (⇢ = �0.329)
• Parameters pi[4] and pi[1] are correlated (⇢ = �0.454)
• Parameters pi[3] and pi[2] are correlated (⇢ = �0.265)
• Parameters pi[4] and pi[2] are correlated (⇢ = �0.302)
• Parameters pi[4] and pi[3] are correlated (⇢ = �0.295)

2.2.3 Minor flags

• Run 1: Parameter er[3] has low ESS (492.065)
• Run 1: Parameter pi[2] has a marginal p-value for Geweke’s diagnostic (p = 0.052)
• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters pinvar and Prior are weakly correlated (⇢ = �0.156)
• Parameters pinvar and TL are weakly correlated (⇢ = 0.156)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[5] and er[1] are weakly correlated (⇢ = �0.189)
• Parameters er[6] and er[1] are weakly correlated (⇢ = �0.137)
• Parameters er[6] and er[2] are weakly correlated (⇢ = �0.13)
• Parameters pi[2] and er[2] are weakly correlated (⇢ = 0.119)
• Parameters er[5] and er[3] are weakly correlated (⇢ = �0.114)
• Parameters pi[4] and er[4] are weakly correlated (⇢ = 0.082)
• Parameters pi[2] and er[5] are weakly correlated (⇢ = �0.111)
• Parameters pi[3] and er[5] are weakly correlated (⇢ = 0.142)
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BONSAI generates a report that highlights potential MCMC 
    pathologies.

It summarizes issues for 
the entire MCMC project.
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Figure 6: Parameter plots

Mean Lower 95% HPD Upper 95% HPD ESS Geweke KL
Run 1 0.22 0.17 0.27 890.73 0.26 1.62
Run 2 0.22 0.17 0.26 833.69 0.09 1.65
Run 3 0.22 0.17 0.27 558.97 0.42 1.65
Combined runs 0.22 0.17 0.27 2283.39

Table 8: Parameter table

Major flags

• Parameters er[2] and er[4] are correlated (⇢ = �0.291)
• Parameters er[2] and er[5] are correlated (⇢ = �0.317)

Minor flags

• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[2] and er[6] are weakly correlated (⇢ = �0.13)
• Parameters er[2] and pi[2] are weakly correlated (⇢ = 0.119)
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Figure 6: Parameter plots

Mean Lower 95% HPD Upper 95% HPD ESS Geweke KL
Run 1 0.22 0.17 0.27 890.73 0.26 1.62
Run 2 0.22 0.17 0.26 833.69 0.09 1.65
Run 3 0.22 0.17 0.27 558.97 0.42 1.65
Combined runs 0.22 0.17 0.27 2283.39

Table 8: Parameter table

Major flags

• Parameters er[2] and er[4] are correlated (⇢ = �0.291)
• Parameters er[2] and er[5] are correlated (⇢ = �0.317)

Minor flags

• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[2] and er[6] are weakly correlated (⇢ = �0.13)
• Parameters er[2] and pi[2] are weakly correlated (⇢ = 0.119)
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Figure 6: Parameter plots

Mean Lower 95% HPD Upper 95% HPD ESS Geweke KL
Run 1 0.22 0.17 0.27 890.73 0.26 1.62
Run 2 0.22 0.17 0.26 833.69 0.09 1.65
Run 3 0.22 0.17 0.27 558.97 0.42 1.65
Combined runs 0.22 0.17 0.27 2283.39

Table 8: Parameter table

Major flags

• Parameters er[2] and er[4] are correlated (⇢ = �0.291)
• Parameters er[2] and er[5] are correlated (⇢ = �0.317)

Minor flags

• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[2] and er[6] are weakly correlated (⇢ = �0.13)
• Parameters er[2] and pi[2] are weakly correlated (⇢ = 0.119)
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Mean Lower 95% HPD Upper 95% HPD ESS Geweke KL
Run 1 0.22 0.17 0.27 890.73 0.26 1.62
Run 2 0.22 0.17 0.26 833.69 0.09 1.65
Run 3 0.22 0.17 0.27 558.97 0.42 1.65
Combined runs 0.22 0.17 0.27 2283.39

Table 8: Parameter table

Major flags

• Parameters er[2] and er[4] are correlated (⇢ = �0.291)
• Parameters er[2] and er[5] are correlated (⇢ = �0.317)

Minor flags

• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[2] and er[6] are weakly correlated (⇢ = �0.13)
• Parameters er[2] and pi[2] are weakly correlated (⇢ = 0.119)
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Figure 6: Parameter plots

Mean Lower 95% HPD Upper 95% HPD ESS Geweke KL
Run 1 0.22 0.17 0.27 890.73 0.26 1.62
Run 2 0.22 0.17 0.26 833.69 0.09 1.65
Run 3 0.22 0.17 0.27 558.97 0.42 1.65
Combined runs 0.22 0.17 0.27 2283.39

Table 8: Parameter table

Major flags

• Parameters er[2] and er[4] are correlated (⇢ = �0.291)
• Parameters er[2] and er[5] are correlated (⇢ = �0.317)

Minor flags

• Run 2: Parameter er[2] has a marginal p-value for Geweke’s diagnostic (p = 0.091)
• Parameters er[2] and er[1] are weakly correlated (⇢ = �0.228)
• Parameters er[2] and er[6] are weakly correlated (⇢ = �0.13)
• Parameters er[2] and pi[2] are weakly correlated (⇢ = 0.119)
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2.4.1 Overall correlations
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Figure 16: Correlation plot
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Figure 87: posterior correlations 8
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Assessing MCMC Performance: 
Software Tools

Additionally, it identifies 
correlations among 
parameters.

BONSAI generates a report that highlights potential MCMC 
    pathologies.


