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Nucleotide Substitution Models
Recall (from yesterday) CTMC models for nucleotide substitution make 
several simplifying assumptions: 

the rate of the substitution process is constant across sites 

the nature of the substitution process is constant cross sites 

sites are independant

For instance, the GTR:
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Accommodating Heterogeneity

Typically (but not necessarily): 

          - shared among data partitions 

          -independent for each data partition

L(⌧,⌫,�) =
nY

i=1

f(xi|⌧,⌫,�)

⌧,⌫

�
r = (rac, rag, rat, rcg, rct, rgt)
⇡ = (⇡a,⇡c,⇡g,⇡t)
↵



How does this 
influence inference?
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Underparameterization is often worse than overparameterization

Huelsenbeck & Rannala 2004

Generating model is GTR+G



Huelsenbeck & Rannala 2004

Generating model is JC

Underparameterization is often worse than Overparameterization



From earlier today…
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abundant empirical evidence that substitution process varies 

models that ignore heterogeneity can give inaccurate 
estimates of node posteriors 

this effect is worse in large (more heterogenous) datasets 

this effect is worse for difficult to resolve nodes

Take homes
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3. chosen using AIC
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Analyze
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Importance of accommodating process heterogeneity

Kainer and Lanfear 2015

Topology changes



Importance of accommodating process heterogeneity

Kainer and Lanfear 2015Branch lengths also change



Importance of accommodating process heterogeneity

Kainer and Lanfear 2015

Nodes subtended by short branch lengths and low support disproportionately effected



abundant empirical evidence that substitution process varies 

models that ignore heterogeneity can give inaccurate 
estimates of node posteriors 

this effect is worse in large (more heterogenous) datasets 

this effect is worse for difficult to resolve nodes

Take homes



abundant empirical evidence that substitution process varies 

models that ignore heterogeneity can give inaccurate 
estimates of node posteriors, and branch lengths, and topologies 

this effect is worse in large (more heterogenous) datasets 

this effect is worse for difficult to resolve nodes

Take homes



Take homes

abundant empirical evidence that substitution process varies 

models that ignore heterogeneity can give inaccurate 
estimates of node posteriors, and branch lengths, and topologies 

this effect is worse in large (more heterogenous) datasets 

this effect is worse for difficult to resolve nodes



Take homes

Precise conditions of ‘Big Data’ studies

abundant empirical evidence that substitution process varies 

models that ignore heterogeneity can give inaccurate estimates 
of node posteriors, and branch lengths, and topologies 

this effect is worse in large (more heterogenous) datasets 

this effect is worse for difficult to resolve nodes



How do we select a partitioning model?

This is a similar problem to what we covered this morning 

Seek to capture the relevant variation in the data, 
balancing the bias-variance tradeoff

Number of Parameters

Bia
s

Va
ria

nc
e

Extreme OverpartitioningExtreme Underpartitioning

We can use similar tools as before



How do we select a partitioning model?

Höhna et al. Partition Tutorial



Scaling up

Many possible partition models even for ‘small data’. 

Simple partitioning by biological features: 2 genes x 3 codon 
positions: # of Classes # of possible models

1 1

2 31

3 90

4 65

5 15

6 1

total 203
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the partition model is 
the same for all 

parameters

Two issues:
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Scaling up
Many possible partition models even for ‘small data’. 

Simple partitioning by biological features: 2 genes x 3 codon 
positions:

# of Classes # of possible models

1 1

2 31

3 90

4 65

5 15

6 1

total 203

Like many problems in 
phylogenetics, this doesn’t 

scale easily



Scaling up: potential solutions
Model selection: select a single ‘best fitting’ model by 
comparing many possible alternatives 

estimate marginal likelihood and use Bayes Factors to 
do model selection 

AIC or BIC model selection (e.g., Lanfear et al. 2012, 
Lanfear et al. 2017)

General approach: Calculate likelihood of data under a particular model, 
penalize for model complexity via the prior (marginal likelihood) or some 

penalty term (AIC or BIC). Compare.
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Model Selection and Model Averaging

Model Selection: Choose the model that best fits the data. 

The data are random variables, the parameters are (or 
are not) random variables, but the model is fixed. 

Model Averaging: Consider alternative models in proportion 
to their probability 

The model itself is a random variable with associated 
uncertainty, so we account for this.
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Scaling up: potential solutions
Model Averaging: Treat the partition-model itself as a 
random variable and use MCMC to marginalize over 
possible partition models (and other parameters of the 
joint phylogenetic model) 

Moore et al. 2014 - AutoParts 

Wu et al. 2013 - substBMA (addon for BEAST 2) 

RevBayes

General approach: Model the number of partitions and the assignment of 
sites or classes to those partitions using the Dirichlet Process
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Dirichlet Process
A stochastic process that allows us to describe the prior 
probability of a mixture model for the number of partitions 
and the assignment of data to those partitions 

More simply: A prior probability distribution for clustering 
problems 

How many clusters are there? 

Which observations belong to which clusters?
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‘The Chinese Restaurant Process’
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The first customer always chooses the first table. 

The nth customer chooses the first unoccupied table 
with probability                    , and an occupied table with 
probability                    , where c is the number of people 
already at that table.      
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Imagine a restaurant with an infinite number of tables. 
Customers walk in one at a time and choose a table to sit 
down at: 

The first customer always chooses the first table. 

The nth customer chooses the first unoccupied table 
with probability                    , and an occupied table with 
probability                    , where c is the number of people 
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‘The Chinese Restaurant Process’
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Large alpha - many tables in use
Popular tables stay popular



‘The Chinese Restaurant Process’

Sorts customers into tables

http://topicmodels.west.uni-koblenz.de/ckling/tmt/crp.html



‘The Chinese Restaurant Process’

Sorts observations into clusters
Sorts customers into tables

http://topicmodels.west.uni-koblenz.de/ckling/tmt/crp.html



‘The Chinese Restaurant Process’

Sorts observations into clusters
Sorts customers into tables

Sorts alignment classes into partitions
http://topicmodels.west.uni-koblenz.de/ckling/tmt/crp.html



Dirichlet Process Prior
↵ = 1

↵ = 10

↵ = 100

↵ = 1000

High Prior Probability for few partitions

High Prior Probability for many partitions

↵

n� 1 + ↵

c

n� 1 + ↵

new cluster:

‘occupied’ cluster:
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Scaling up
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Independent for each partition

Shared across partitionsScaling up may also mean 
that we need to relax this 

assumption

Topology



Scaling up

Hobolth et al. 2007



Tutorial

Partition models in RevBayes 

set up partitioned model 

run mcmc 

stepping stone integration for marginal likelihood 
estimation



Exercise
I have supplied data for four ‘loci’ (sim_locus1.nex,…sim_locus4.nex) 

Choose (and sign up for) one partition model of the form (12,34 or 
1,2,34 or 1234 or 1,2,3,4) 

GTR + Gamma model for all partitions 

Settings for stepping stone integration: 

50 power posteriors (cats=50) 

burnin=500, tuning interval=200 

2000 generations per power posterior 

add your estimate to the spreadsheet

1 2 3 4


