

Growth of GenBank

(1982 - 2005)

Growth of Sequences & Databases

Growth of DNA Sequence Information

The era of big data in biology

Growth of dbSNP, 2002-2009

NextGen Sequencing a Game-Changer

Growth of dbSNP (2003-2009)

Productivity in DNA Synthesis and Sequencing Using Commercially Available Instruments

Cost to sequence a human genome (USD)

Explosive Growth in Sequence Data

As the cost of DNA sequencing falls, the growth of human genome data becomes exponential

AssureRx Health, Inc. CONFIDENTIAL 4

Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics

Nature Reviews | Genetics

PERSPECTIVE

Big Data: Astronomical or Genomical?

Growth of DNA Sequencing

Stephens et al. 2015

To what end?

"We think big data is what everyone cares about.

It's not.

It's stories."

- **Dr. Jessica Utts**President, American Statistical Association

The goal is to gather 'sufficient' data in order to answer a question 'robustly.'

To what end?

"We think big data is what everyone cares about.

It's not.

It's stories."

- **Dr. Jessica Utts**President, American Statistical Association

The goal is to gather 'sufficient' data in order to answer a **question** 'robustly.'

The question is what is interesting.

To what end?

"We think big data is what everyone cares about.

It's not.

It's stories."

- **Dr. Jessica Utts**President, American Statistical Association

The goal is to gather 'sufficient' data in order to answer a **question** 'robustly.'

The question is what is interesting.

This is no different than it's always been.

A case study

- A very specific question:
 - What are the phylogenetic affinities of turtles?

- Brings up more general issues:
 - How do we approach difficult phylogenetic problems?
 - How should we approach difficult phylogenetic problems?

Turtle Phylogenetics

- Overarching problem:
 - Where do turtles sit in the amniote tree?

Early approaches relied on osteology (primarily of the skull)

Early approaches relied on osteology (primarily of the skull)

Günther 1867, Gaffney 1980

Primary issue with this hypothesis

More osteology

Reippel and deBraga 1996 Nature

Molecular Information

Mitochondrial data

Molecular Information

Nuclear data

Summary

Turtle Genomics

- 3 genome consortia
- Several more independent studies

Phylogenomics

Phylogenomics

All analyses agree!

MicroRNA Result

MicroRNAs support a turtle + lizard clade

Summary

• Ugh...so what do we do?

Summary

• Ugh...so what do we do?

Data in Phylogenetics

- Let's take a step back.
- How have we been approaching this (and most other) phylogenetic questions?

Data in Phylogenetics

- Let's take a step back.
- How have we been approaching this (and most other) phylogenetic questions?

11 nuclear genes

A data centric view

Phylogenomics

Inferences result from <u>both</u> data and the model

 In developing a statistical model for a problem, we inevitably make a tradeoff

 In developing a statistical model for a problem, we inevitably make a tradeoff

 In developing a statistical model for a problem, we inevitably make a tradeoff

1 gene

10 genes

1000 genes

 In developing a statistical model for a problem, we inevitably make a tradeoff

1 gene

10 genes

1000 genes

 In developing a statistical model for a problem, we inevitably make a tradeoff

1 gene

10 genes

1000 genes

The point.

The point.

But this is our

bigger problem

How do we know it's a bigger problem?

How do we know it's a bigger problem?

Where's the disagreement coming from?

How do we know it's a bigger problem?

Where's the disagreement coming from?

'Big data' turtle studies

- Chiari et al. (2012)
 - 248 transcriptomic loci
 - 12 taxa
- Crawford et al. (2012)
 - 1,145 UCEs
 - 10 taxa
- Fong et al. (2012)
 - 75 Sanger-sequenced loci
 - 129 taxa
- Lu et al. (2013)
 - 1,638 transcriptomic and genomic loci
 - 11 taxa

- Shaffer et al. (2013)
 - 1,955 genomic loci
 - 8 taxa
- Wang et al. (2013)
 - 1,113 genomic loci
 - 12 taxa

Bipartition Bayes Factors

Archosaur + Turtle Monophyly

Archosaur + Turtle Monophyly

Archosaur + Turtle Monophyly

1/1,000,000,000,000,000,000,000,000

That's 27 zeroes!

If you played a lottery every minute with that chance of winning, you still probably wouldn't win, unless you played for...

the age of the universe*190,258,751,903

Archosaur + Turtle Monophyly

All of these **strongly supported** by this dataset.

PP = 1.0

Equivocation about turtle placement across genes

This dataset supports turtles as sister to crocodilians.

But what's up with these outliers?

How influential are they?

Both look like paralogs

Strong influence

Brown and Thomson 2017

Strong influence

Strong influence

A troubling, but common, result

 More recent papers build on this result and find similar patterns:

New Results

Site and gene-wise likelihoods unmask influential outliers in phylogenomic analyses

Joseph F. Walker, Joseph W. Brown, Stephen A. Smith doi: https://doi.org/10.1101/115774

Article

Contentious relationships in phylogenomic studies can be driven by a handful of genes

Xing-Xing Shen, Chris Todd Hittinger & Antonis Rokas [™]

Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics

Karen Siu-Ting,*,1,2,3 María Torres-Sánchez,^{‡,4} Diego San Mauro,⁴ David Wilcockson,⁵ Mark Wilkinson,⁶ Davide Pisani, Mary J. O'Connell, and Christopher J. Creevey*, 1

Take homes

- More data does not necessarily lead to more accuracy, or to consensus
- A lot of phylogenomic **progress** is actually about figuring out how to **model data well**, not collecting more data per se

Some Possible Ways Forward

Embrace the computational challenge

- Analyses need not finish quickly
- Advances in computation help a lot here
 - parallel architectures and code
 - fast computation libraries
 - availability of compute resources
 - continual methodological improvement

♣ Compute Resources

Name	Status	CPUs	Peak TFlops	Utilization	Running Jobs	Queued Jobs	Other Jobs
Stampede2 ■ ✓ User Guide	✓ Healthy	368280	12800.0	93%	1006	900	381
Comet ■ > User Guide	✓ Healthy	46752	2000.0	52%	1866	16	82
SuperMIC ■ ✓ User Guide	✓ Healthy	7200	925.0	10%	56	0	0

XSEDE jobs by field for 2016

XSEDE users by field for 2016

Number of Users: Active

New Tools on the Horizon

- More complex models
- More efficient sampling. e.g., Hamiltonian Monte Carlo
- More efficient implementations of existing methods

Some Possible Ways Forward

- Embrace the computational challenge
- Get very picky about our data. Careful and detailed data exploration is your friend.

Some Possible Ways Forward

- Embrace the computational challenge
- Get very picky about our data. Careful and detailed data exploration is your friend.
- Carefully consider tradeoffs between speed and approximation

