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Outline
* An overview of morphology CTMCs in RevBayes
 The Mk Model
e Ascertainment Bias
« Alternative Q-Matrices
« State-Frequency heterogeneity models
Break
e Ancestral State Estimation in RevBayes
e Seqguential vs. Joint ancestral State Reconstruction

« A few more fancy substitution matrices: Correlated characters, Covarion models



Incorporating Morphology In

e Oldest DNA Sample:
~700k years old

Phylogeny
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e MRCA Equus 4.0-4.5 Myr
e 1.062 Myr (1.037-1.084)
e 0.359 Myr (0.341-0.375)
e 0.287 Myr (0.274-0.307)

Donkey — 12.40x

Thistle Creek — 1.12x

CGG10022 — 1.78x
e Przewalski's - 9.61x

Icelandic — 8.43x
100
Icelandic P5782 - 33.22x*

52

97
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Norwegian Fjord — 7.86x
Quarter - 14.46x*
Standardbred - 12.16x

Arabian - 11.03x

63 Thoroughbred - 21.08x

Orlando et al 2013



Incorporating Morphology In
Phylogeny
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-ossills are the only direct
observations of the past

Historically,
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working with molecular data
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* As neontologists, primarily Q = (//() 01 )

The Mk model, Lewis, 2001
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Incorporating Morphology In
Phylogeny

e Sometimes, use of a
model-based
method results In a
different topology
than a parsimony
analysis




Incorporating Morphology In

Phylogen

e Often, they are not
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100-

Parsimony: 75% missing data
- Parsimony: No missing data
- Mk: 75% missing data

Mk: No missing data

Percentage Topological Error

0+ . .

Evolutiona ry Rate )
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RevBayes

RevBayes implements the Mk Model
mcmc_simple.Rev

10 N
. _ for (I in 1:n_branches) {
; Uniform bl[I] ~ dnExponential(10.0)
! +
: @/ topology ~ dnUniformTopology(taxa)
: . psi := treeAssembly(topology, bl)
GE2NEZ3L F
“’. Q_morpho <- fnJC(2)
i Q
M tennns phyMorpho ~ dnPhyloCTMC( tree=psi,
Tree JC siteRates=rates_morpho, Q=Q_morpho,

type="Standard", coding="variable" )

phyMorpho.clamp( data )

PhyloCTMC

Adapted from Hohna, Landis, Heath



Ascertainment Bias

Systematic bias in the way the data are collected



Ascertainment Bias

Char.1 Char.2 Char. 3
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RevBayes

RevBayes implements the Mk Model
mcmc_mk.Rev

110 V| N
L * : _ for (I in 1:n_branches) {
ntial ! Uniform bl[I] ~ dnExponential(10.0)
I I }
: : @/ topology ~ dnUniformTopology(taxa)
; ! 3 psi := treeAssembly(topology, bl)
GE2NH3 . S

“’. Q_morpho <- fnJC(2)

i Q

s phyMorpho ~ dnPhyloCTMC( tree=psi,

Tree JC siteRates=rates_morpho, Q=Q_morpho,

type="Standard", coding="variable" )

phyMorpho.clamp( data )

PhyloCTMC

Adapted from Hohna, Landis, Heath



RevBayes

Load both log files into Tracer



Morphology Is complicated

Each morphological change may be underlain by
multiple genetic changes



Morphology Is complicated

Each morphological change may be underlain by
multiple genetic changes

Studying parity mode evolution
Looked at multiple models

that penalize changes in
several ways

Wright et al. 2015
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Morphology Is complicated

We might expect that you have to go through one state
to get to another



Morphology Is complicated

We might expect that you have to go through one state
to get to another (Wagner Parsimony)



Morphology Is complicated

Forelimb Hindlimb
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e Mk model and two ways of
e assumption of equal rates

using a prior on state frequencies



Each of you will run section 4
(mcmc_mk_discreitzed.Rev) of the RevBayes
tutorial

We'll compare this to pre-cooked output from
section 5.



Each of you will run section 4
(mcmc_mk_discreitzed.Rev) of the RevBayes
tutorial

We'll compare this to pre-cooked output from
section 5.

Start this now.



So what's in these two
models”?






Sphecomyrminae

Photo: Steve Shattuck



Sphecomyrminae

e Presence of wasp-
like features that
are lost after
divergence of
Sphecomyrminae
from the rest of
the ants

Photo: Steve Shattuck
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Sphecomyrminae

e Presence of wasp-
like features that
are lost after
divergence of
Sphecomyrminae
from the rest of
the ants

1 <m0

® Presence of ant
apomorphies

10

Photo: Steve Shattuck



Sphecomyrminae

e Presence of wasp-
like features that
are lost after
divergence of
Sphecomyrminae
from the rest of
the ants

1 <m0

® Presence of ant
apomorphies

Photo: Steve Shattuck

Poor fit of character change L
symmetry assumption D















Allowing asymmetrical
transition rates

* We could come up with a new transition matrix
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* We could come up with a new transition matrix

* We could also use a prior on state frequencies



Allowing asymmetrical
transition rates

 We could come up with a new transition matrix

* \We could also use a prior on state frequencies

Probability of O to 1 change
0.75

0 —= 1

I




Allowing asymmetrical
transition rates

 We could come up with a new transition matrix

* \We could also use a prior on state frequencies

Probability of O to 1 change
State Frequency of O
0.75x0

0 —= 1



Allowing asymmetrical
transition rates

 We could come up with a new transition matrix

* \We could also use a prior on state frequencies

Probability of O to 1 change
State Frequency of O
0.75x0=0.0

0 —= 1



Allowing asymmetrical
transition rates

 We could come up with a new transition matrix

* \We could also use a prior on state frequencies

Probability of O to 1 change
State Frequency of O
0.75x 0.5 =0.325

0 —= 1



Symmetric Beta
a=zf3

3.0 -
> 30 - Parameters
5 a-= 00
a 2.0
O
a 2.0 )
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> 15 -
3 /\
) U
o a=0.2
0.5 -
g o = 0.05
0.0 -
O to 1 fransition rate 50 100
1 to O transition rate 100 20 0

Wright et al. 2016



Symmetric Beta
a=>0
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Relative Probability

Wright et al. 2016



By allowing variation in state frequencies, we
can allow asymmetrical transitions



Symmetric Beta

a=_[

3.0 -
> 30 - Parameters
5 a-= 00
a 2.0
O
a 2.0 )
: a =
> 15 -
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0.5 -
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1 to O transition rate 100 20 0

Wright et al. 2016
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Asymmetric Beta
a=zf3

exponential : discrete beta
|

site frequencies

site matrices

to the phyloCTMC
Wright et al. in prep
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Asymmetric Beta
a=zf
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The previous model really only
works for binary data



The previous model really only
works for binary data

Maybe you don't have binary data



Site Heterogenous Discrete
Morphology Model

e The SDHM is similar to the CAT model



Site Heterogenous Discrete
Morphology Model

e The SDHM is similar to the CAT model

* |n this model, initialize our state frequencies from a
Dirichlet prior, which allows us to expand the
number of states beyond two
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[ [ 0.651, 0.349]
1 0.472, 0.528]

0.548, 0.452

0.144, 0.856

]
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site matrices



We're not going to focus further on this

mode

It you'd like to talk about it during open
poroject hours, please come find me.




Load your output from your three inferences into
Tracer. Also load hyperprior.log from
output_examples




Break!



Ancestral State Estimation

 Marginalizing over unobserved character histories
along a branch

Model, M
Parameters, ©
Tip States, Xtip
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Ancestral State Estimation

 Marginalizing over unobserved character histories
along a branch

Model, M
Parameters, ©
Tip States, Xtip

nnnnnnnn P(Xinternala th'p ’ 97 M)
P(Xintefrnal "9; M, Xtip)



Joint estimation

* Somewhat confusing terminology

* Historically, there has been joint and marginal
estimation

- Joint: finds the best probability combination of
node states for the tree

- Marginal: maximize probability at a node, not
considering all other nodes in the tree



Joint estimation

* Somewhat confusing terminology
* Joint: Treating both the tree and the ancestral state
estimates as random variables



Joint estimation

* Somewhat confusing terminology
* Co-estimation: Treating both the tree and the
ancestral state estimates as random variables



Joint estimation

 Somewhat confusing terminology
 Sequential: Infer the tree, then the ancestral states
 Co-estimate: Treating both the tree and the
ancestral state estimates as random variables



Ancestral State Estimation

Sequential
Estimation

Co-estimate













Ancestral State Estimation

Sequential Estimation Quick

Co-estimate




Ancestral State Estimation

Quick
Fairly intuitive

Sequential Estimation

Co-estimate
Estimation




Ancestral State Estimation

Quick
Fairly intuitive
Easy-to-use
Implementations

Sequential Estimation

Co-estimate




Ancestral State Estimation

Quick
Fairly intuitive
Easy-to-use
Implementations

Sequential Estimation

lgnores tree uncertainty

Co-estimate







Trees Pvio ard Burbrink
0 Likslihoed <2 675,499

Tiase Dranch Length Improved Beanch Length 2nd Topology Imaroved
Lo Liksliheed -2,59€,343 -2352703

Wright et al 2015



Ancestral State Estimation

Quick .
RS lgnores tree uncertainty
: : : Fairly intuitive .
Sequential Estimation Hard to see uncertainty
Easy-to-use

. . across trees
Implementations

Co-estimate
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Sequential Estimation Fairly intuitive Hard to see uncertainty
Easy-to-use across trees

Implementations Partitioning uncertainty
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uncertainty in ancestral
states more naturally

Co-estimate




Ancestral State Estimation

Quick lgnores tree uncertainty

Sequential Estimation Fairly intuitive Hard to see uncertainty
Easy-to-use across trees

implementations Partitioning uncertainty

Doesn’t redouble effort
Can visualize the
uncertainty in ancestral
states more naturally
Doesn’t reduce dataset
Size

Co-estimate




Ancestral State Estimation

Quick lgnores tree uncertainty

Sequential Estimation Fairly intuitive Hard to see uncertainty
Easy-to-use across trees

implementations Partitioning uncertainty

Doesn’t redouble effort
Can visualize the
uncertainty in ancestral
states more naturally
Doesn’t reduce dataset
Size

There hasn't been a
really great
implementation of this

Co-estimate




Ancestral State Estimation In
RevBayes



Ancestral State Estimation In
RevBayes

* |n the simplest format, we can simply add a monitor
for ancestral states to our model.



Ancestral State Estimation In
RevBayes

* |n the simplest format, we can simply monitor that
ancestral states for our model.

* |n fact, we have already done this.



Ancestral State Estimation In
RevBayes

mcmc_mk.Rev, mcmc_simple.Rev



Ancestral State Estimation In
RevBayes

* By adding this monitor, we call a second set of
computations that conditions the node state on the

tip state

e Co-estimates the most likely set of ancestral states
(Joint estimation)



Ancestral State Estimation In
RevBayes

We will now look at how we can visualize our data nicely
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some of the analyses that RevBayes can put out
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Ancestral State Estimation In
RevBayes

We will now look at how we can visualize our data nicely

Rev(Gadgets is an R package for visualizing output from
some of the analyses that RevBayes can put out

(Did you have trouble getting RevGadgets to work?)



Ancestral State Estimation In
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First we annotate the MAP tree with our ancestral states
(including their uncertainty)



Ancestral State Estimation In
RevBayes

First we annotate the MAP tree with our ancestral states
(including their uncertainty)

(make_anc_state.R)



Ancestral State Estimation In
RevBayes

First we annotate the MAP tree with our ancestral states
(including their uncertainty)

Then, we decorate!



Ancestral State Estimation In
RevBayes

First we annotate the MAP tree with our ancestral states
(including their uncertainty)

Then, we decorate!

(plot_anc_state.R)



Character Correlation



Character Correlation

* We might have some reason to believe that two
characters are correlated

A Spines - Eye Size d) Eye Size - Sting
Spines ' Small Eyes >
Small Eyes No Spines Sting No Sting
Spines , Large Eyes '
Large Eyes > Sting
B Spines - Sting e) Polymorphism - Sting
No Spines ) Monomorphic ’
Sting ) No Sting _
No Sting Polymorphic
Spines ’ Monomorphic )
Sting Sting
C Colony Size - Eye Size f) Colony Size - Sting
Small Colony q Small Colony #
Large Eyes Small Eyes Nosting Large Colony
Large Colony Small Colony
Large Eyes Sting

Blanchard and Moreau 2016



Character Correlation

* We might have some reason to believe that two
characters are correlated
e \We can accommodate this in a Q-matrix

([ —  poo—s10 Ho0-01 0 )
0 1410500 — 0 110311
10100 0 — 01511
\ 0 11510 H11-501 — )




Character Correlation

We might have some reason to believe that two
characters are correlated
We can accommodate this in a Q-matrix

/ — [00—10  L00—s01 0 \
0 = 141000 — 0 [110-11
101500 0 — 01311

\ 0 H11-510 H11-01 —

* Only one event occurs at a time
* Probability of X changing depends on Y, and
vice versa
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Covarion Models

 We've talked at a few points about models that rely on
an unobserved state
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Covarion Models

 \We've talked at a few points about models that rely on
an unobserved state

* Covarion models are structurally similar to correlated
trait models

« Have a ‘hidden’ state
* Originally proposed for nucleotide evolution



(1)

Covarion Models

—  T1qp 12 0
ray - 0 512
521 0 — 7‘2(16?
0 S21 7‘261%) —
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RevBayes 3.4
If you just want to see the transition probabilities

and calculate a transition probability, follow the
PDF




RevBayes 3.4
It you just want to see the transition probabilities
and calculate a transition probabillity, follow the
PDF
It you would like to run this,
mcmc_mk_covarion.Rev




