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Outline

• An overview of morphology CTMCs in RevBayes 

• The Mk Model 

• Ascertainment Bias 

• Alternative Q-Matrices 

• State-Frequency heterogeneity models 

Break

• Ancestral State Estimation in RevBayes 

• Sequential vs. Joint ancestral State Reconstruction 

• A few more fancy substitution matrices: Correlated characters, Covarion models



Incorporating Morphology in 
Phylogeny

• Oldest DNA Samples are 
~700k years old

Orlando et al 2013



Incorporating Morphology in 
Phylogeny

• Including paleontological 
specimens can help us make 
better inferences about 
comparative biology

Slater et al 2012



Fossils are the only direct 
observations of the past

Historically, 
phylogenetic 
trees estimated 
from 
morphological 
data have been 
inferred using 
maximum 
parsimony.

Abella et al. 2012
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Incorporating Morphology in 
Phylogeny

• Sometimes, use of a 
model-based 
method results in a 
different topology 
than a parsimony 
analysis

Lee and Worthy, 2011



Incorporating Morphology in 
Phylogeny

• Often, they are not.
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Incorporating Morphology in 
Phylogeny

We will talk about how to relax this simplifying assumption in a 
bit



RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_simple.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential

Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {

bl[I] ⇠ dnExponential(10.0)

}

topology ⇠ dnUniformTopology(taxa)

psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,

siteRates=rates_morpho, Q=Q_morpho,

type="Standard", coding="variable" )

phyMorpho.clamp( data )



Ascertainment Bias

Systematic bias in the way the data are collected
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B 0 1 1

C 0 0 2
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RevBayes

Adapted from Hohna, Landis, Heath

RevBayes implements the Mk Model 
mcmc_mk.Rev

$

seq

PhyloCTMC

Q

JC

 
Tree

bli ⌧
Exponential

Uniform

10 N

i 2 2N � 3

for (I in 1:n_branches) {

bl[I] ⇠ dnExponential(10.0)

}

topology ⇠ dnUniformTopology(taxa)

psi := treeAssembly(topology, bl)

Q_morpho <- fnJC(2)

phyMorpho ⇠ dnPhyloCTMC( tree=psi,

siteRates=rates_morpho, Q=Q_morpho,

type="Standard", coding="variable" )

phyMorpho.clamp( data )



RevBayes
Load both log files into Tracer
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Morphology is complicated
Each morphological change may be underlain by 

multiple genetic changes

Wright et al. 2015

Studying parity mode evolution 

Looked at multiple models  
that penalize changes in  

several ways 



RevBayes 3.1
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Morphology is complicated

We might expect that you 
have to go through one 
state to get to another

de Bakker 2013



RevBayes 3.2



These ways of getting around the 
assumption of equal transition rates require 
that we specify, a priori what we think our 

transition rates are and what characters we 
think evolve according to which matrix



We are going to do model comparisons 
between the Mk model and two ways of 
relaxing the assumption of equal rates 

using a prior on state frequencies 



Each of you will run section 4 
(mcmc_mk_discreitzed.Rev) of the RevBayes 

tutorial 

We'll compare this to pre-cooked output from 
section 5. 



Each of you will run section 4 
(mcmc_mk_discreitzed.Rev) of the RevBayes 

tutorial 

We'll compare this to pre-cooked output from 
section 5. 

Start this now.



So what's in these two 
models? 
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Sphecomyrminae
● Presence of wasp-

like features that 
are lost after 
divergence of 
Sphecomyrminae 
from the rest of 
the ants 

● Presence of ant 
apomorphies  

Photo: Steve Shattuck

1         0

1         0 Poor fit of character change 
symmetry assumption 
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Allowing asymmetrical 
transition rates

0 1

• We could come up with a new transition matrix 

• We could also use a prior on state frequencies
Probability of 0 to 1 change 

State Frequency of 0 
0.75 x 0.5 = 0.325



Symmetric Beta 
α ≠ β

Wright et al. 2016



Symmetric Beta 
α = β
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0 1



By allowing variation in state frequencies, we 
can allow asymmetrical transitions



Symmetric Beta 
α = β

Wright et al. 2016
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Asymmetric Beta 
α ≠ β

Wright et al. in prep

0.890.700.500.248



The previous model really only 
works for binary data 



The previous model really only 
works for binary data 

Maybe you don’t have binary data 



Site Heterogenous Discrete 
Morphology Model

• The SDHM is similar to the CAT model



Site Heterogenous Discrete 
Morphology Model

• The SDHM is similar to the CAT model 

• In this model, initialize our state frequencies from a 
Dirichlet prior, which allows us to expand the 
number of states beyond two
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�� k ⇡i

Qi

to the phyloCTMC

Dirichelet

exponential

site matrices

site frequencies

i 2 N

i K

[ [ 0.651, 0.349] 
 [ 0.472, 0.528] 
[ 0.548, 0.452] 

 [ 0.144, 0.856]]



We’re not going to focus further on this 
model 

If you’d like to talk about it during open 
project hours, please come find me.



Load your output from your three inferences into 
Tracer. Also load hyperprior.log from 

output_examples



Break!
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Ancestral State Estimation
• Marginalizing over unobserved character histories 

along a branch
Model, M 

Parameters, Θ
Tip States, Xtip

P (Xtip|✓,M) =
P

Xinternal
P (Xinternal, Xtip | ✓,M)

P (Xinternal|✓,M,Xtip)



Joint estimation
• Somewhat confusing terminology 

• Historically, there has been joint and marginal 
estimation 
• Joint: finds the best probability combination of  

node states for the tree 
• Marginal: maximize probability at a node, not 

considering all other nodes in the tree
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• Joint: Treating both the tree and the ancestral state 

estimates as random variables
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Joint estimation

• Somewhat confusing terminology 
• Sequential: Infer the tree, then the ancestral states 
• Co-estimate: Treating both the tree and the 

ancestral state estimates as random variables 



Ancestral State Estimation

Sequential 
Estimation

Co-estimate 
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Estimate a tree Assume a model 
of trait evolution

Estimate Ancestral  
States



Wright et al 2015
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Ancestral State Estimation

Sequential Estimation
Quick 

Fairly intuitive 
Easy-to-use 

implementations

Ignores tree uncertainty 
Hard to see uncertainty 

across trees 
Partitioning uncertainty

Co-estimate 

Doesn’t redouble effort 
Can visualize the 

uncertainty in ancestral 
states more naturally 

Doesn’t reduce dataset 
size

There hasn’t been a 
really great 

implementation of this
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Ancestral State Estimation in 
RevBayes

• In the simplest format, we can simply monitor that 
ancestral states for our model. 

• In fact, we have already done this. 



Ancestral State Estimation in 
RevBayes

mcmc_mk.Rev, mcmc_simple.Rev



Ancestral State Estimation in 
RevBayes

• By adding this monitor, we call a second set of 
computations that conditions the node state on the 
tip state 

• Co-estimates the most likely set of ancestral states 
(joint estimation)
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Ancestral State Estimation in 
RevBayes

We will now look at how we can visualize our data nicely 

RevGadgets is an R package for visualizing output from 
some of the analyses that RevBayes can put out

(Did you have trouble getting RevGadgets to work?)
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Ancestral State Estimation in 
RevBayes

First we annotate the MAP tree with our ancestral states 
(including their uncertainty) 

Then, we decorate!



Ancestral State Estimation in 
RevBayes

First we annotate the MAP tree with our ancestral states 
(including their uncertainty) 

Then, we decorate! 

(plot_anc_state.R)



Character Correlation



Character Correlation
• We might have some reason to believe that two 

characters are correlated 

Blanchard and Moreau 2016
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Character Correlation
• We might have some reason to believe that two 

characters are correlated 
• We can accommodate this in a Q-matrix

• Only one event occurs at a time 
• Probability of X changing depends on Y, and 

vice versa 



RevBayes 3.3
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Covarion Models
• We’ve talked at a few points about models that rely on 

an unobserved state 
• Covarion models are structurally similar to correlated 

trait models 
• Have a ‘hidden’ state 
• Originally proposed for nucleotide evolution



Covarion Models
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PDF



RevBayes 3.4 
If you just want to see the transition probabilities 
and calculate a transition probability, follow the 

PDF 
If you would like to run this, 

mcmc_mk_covarion.Rev


