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Fvidence for Systematic Error (Bias)
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Fvidence for Systematic Error (Bias)

These are two high-profile examples, but there are
many others (we’ll talk about turtles later).

When conflict is this strong, stochastic error is not a
plausible explanation.

Data is no longer limiting. Ve are now limited by our
ability to accurately extract information from the data.



The Standard Approach

(1) Collect Data (D)

{(3.4,2.1,5.4,.)



The Standard Approach

(1) Collect Data (D) (2) Define Models
M;ll— D

(3.4,2.1,54, .} M: g D
Ms A — D



The Standard Approach

(1) Collect Data (D) (2) Define Models (3) Fit Models
Mi Bl— D MiIl— D : Lj

(34,2.1,5.4, ..} M:@ =D Meg =D L
Ms A — D Ms A —D : Ls



The Standard Approach

(1) Collect Data (D) (2) Define Models (3) Fit Models
M:{ ll— D Mi{B— D : Li

(3.4,2.1,5.4,..) M2 =3D Mz 5 = D: L

M3A—>D MSA—>D:L3

(4) Compare Models &
Choose “Best”

AlIC
BIC

AT \ La

Mo>M1> Mz «—



The Standard Approach

(1) Collect Data (D) (2) Define Models (3) Fit Models
Mi Bl— D MiIl— D : Lj

(3.4,2.1,5.4,..) M2 =3D Mz 5 = D: L

Ms A — D Ms A —D : Ls
(5) Report Inferences from

“Best” Model

(4) Compare Models &

Nature 2012 Ch y '
The Shapes of our Data 00S€E BeSt
Intro llllllllllllllllllllllllllllllllllllllll . Blah blah
blah important blah blah blah .Science blah blah blah blah blah .
Methods Blah blah blah blah . Blah blah blah liklihood blah 3 models : AIC
“ Blahblah blah AIC blah blah blah .Science blah blah blah blah . M M M BIC
Results M2 ' 2 > 1 > 3 I E L2
LRT L
Condlusions . Both squares and 3
circles are important.




The Standard Approach

nature

The guinea-pig is not a rodent

Anna Maria D’Erchia*t, Carmela Gissi* T,
Graziano Pesolei, Cecilia Saccone*§ & Ulfur Arnasoni

* Dipartimento di Biochimica e Biologia Molecolare, Universita di Bari,
70125 Bari, Italy

t Department of Evolutionary Molecular Systematics, University of Lund,
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1 Dipartimento di Biologia DBAF, Universita della Basilicata, 30100
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IN 1991 Graur ef al. raised the question of whether the guinea-pig,
Cavia porcellus, is a rodent'. They suggested that the guinea-pig
and myomorph rodents diverged before the separation between
myomorph rodents and a lineage leading to primates and artio-
dactyls. Several findings have since been reported, both for and
against this phylogeny, thereby highlighting the issue of the
validity of molecular analysis in mammalian phylogeny. Here
we present findings based on the sequence of the complete
mitochondrial genome of the guinea-pig, which strongly contra-
dict rodent monophyly. The conclusions are based on the cumu-
lative evidence provided by orthologically inherited genes and the
use of three different analytical methods, none of which joins the
guinea-pig with myomorph rodents. In addition to the phyloge-
netic conclusions, we also draw attention to several factors that
are important for the validity of phylogenetic analysis based on
molecular data.



The Next Step - Assessing Fit

We know that none of our models is really true. Can we be
sure that the chosen model captures the salient features of
the evolutionary process and provides reliable inferences!?
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The Next Step - Assessing Fit

We know that none of our models is really true. Can we be
sure that the chosen model captures the salient features of
the evolutionary process and provides reliable inferences!?
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The Next Step - Assessing Fit

Are Guinea Pigs Rodents? The Importance of Adequate
Models in Molecular Phylogenetics

Jack Sullivan!'? and David L. Swofford!

The monophyly of Rodentia has repeatedly been challenged based on several studies of molec-
ular sequence data. Most recently, D’Erchia ef al. (1996) analyzed complete mtDNA sequences
of 16 mammals and concluded that rodents are not monophyletic. We have reanalyzed these
data using maximum-likelihood methods. We use two methods to test for significance of dif-
ferences among alternative topologies and show that (1) models that incorporate variation in
evolutionary rates across sites fit the data dramatically better than models used in the original
analyses, (2) the mtDNA data fail to refute rodent monophyly, and (3) the original interpretation
of strong support for nonmonophyly results from systematic error associated with an oversim-
plified model of sequence evolution. These analyses illustrate the importance of incorporating
recent theoretical advances into molecular phylogenetic analyses, especially when results of
these analyses conflict with classical hypotheses of relationships.

KEY WORDS: inconsistency; maximum likelihood; molecular systematics; rodents; rate het-
erogeneity.



How might we assess fit?
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Use our prior knowledge to ask if the data are reasonable.

Use our prior knowledge to ask if inferences are reasonable.
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Posterior Prediction

Could B have come from £ (=, 0| ) 2

Could the model and priors plausibly have
given rise to the data?
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Posterior Prediction

Previously proposed statistics based on the data:

o Multinomial Likelihood (based on frequencies of site patterns)
o Number of Unique Site Patterns

o Frequency of Invariant Sites

o Heterogeneity of Base Frequencies

o Number of parsimony-inferred “parallel” sites




Posterior Prediction

“WVe do not like to ask,‘ls our model true or false?’, since most
probability models in most analyses will not be perfectly true...
The more relevant question is,'Do the model’s deficiencies have
a noticeable effect on the substantive inferences?” “

- Gelman, Carlin, Stern, and Rubin
Bayesian Data Analysis




Posterior Prediction

What about using the inferences provided
by our data as a test statistic(s)?



Posterior Prediction




Topology Test Statistics
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Topology Test Statistics

Tree-to-Tree Distance Tree-to-Tree Distance



Topology Test Statistics
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Branch-Specific Test Statistics

(not yet in RevBayes)
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Branch-Specific Test Statistics

(not yet in RevBayes)

Posterior Predictive p-values Species A
e Species E
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Branch-length Test Statistics
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Motivating Results - Simulation

“Correct” Posteriors l
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Motivating Results - Simulation

Tree-length Error (True - Incorrect)
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Motivating Results - Empirical
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Motivating Results - Empirical

What might we expect from ideal filtering approaches?

Perfect association between decile membership and tree distance
rho (r,) =1
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Motivating Results - Empirical:?,
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Posterior Predictive Filtering
r.=0.964, P=2.2x101°

Rate Filtering
r.=0.482, P=0.0793



Motivating Results - Empirical (X
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Active Development?

Our current inference-based statistics are computationally intense
(lots of MCMC). We are:

o worRing on faster approximations for inference statistics
o conducting baseline simulation studies to establish power

o making the workflow easier and faster (including HPC)



Thoughts on Interpretation

o Assessing model fit is probably most useful with big data

o Not
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