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Evidence for Systematic Error (Bias)

The maximum-likelihood analysis recovered strong support for
ctenophores as sister to all other metazoan lineages (BS = 93)
(Fig. S5D). However, Bayesian inference (Fig. S5E) recovered
sponges as sister to all other metazoans, but support for this and
other deep nodes were low (PP ≤ 90).

Systematic Biases and Their Effect on Phylogenetic Inference. Long-
branch (LB) scores (28), a measurement for identifying taxa and
OGs that could cause LBA, were calculated for each species and
OG with TreSpEx (25). In total, we identified six “long-branched”
taxa, all nonmetazoans (Fig. S6A and Table S2), and 28 OGs
with high LB scores compared with other OGs (Fig. S6 B and C).
We found complete congruence in relationships among basal
metazoan phyla in trees inferred with (datasets 1, 2, 8, 12, and 18
in Fig. 2) and without (datasets 3–7, 9–11, 13–17, 19–21, and 22–
25 in Fig. 2) taxa and genes that had high LB scores, and nodal
support for critical nodes showed little variation among analyses
(Fig. 3 and Figs. S1–S5). Removing OGs with high amino acid
compositional heterogeneity (datasets 7–11, 17–21, 23, and 25 in
Fig. 2) also had no effect on branching order (Fig. 3 and Figs. S2
A–E, S3 E and F, S4 A–E, and S5A). Topologies inferred with
only the slowest evolving half of OGs assembled here (datasets 6
and 16 in Fig. 2) (i.e., least saturated and least prone to homo-
plasy; see Fig. S7 for saturation plots) recovered high support for
ctenophores sister to all other animals and sponge monophyly
with both maximum-likelihood (BS = 100) (Fig. 3 and Figs. S1F
and S3D) and Bayesian inference using the CAT-GTR model
(PP = 1) (Fig. 3 and Fig. S5 B and C). Importantly, our datasets
of the slowest evolving half of OGs were of a broad range of

protein classes (SI Methods; figshare), rather than consisting of a
majority of ribosomal proteins (7, 9).
Inaccurate orthology assignment can also introduce systematic

error into phylogenomic analyses. Although relationships among
basal lineages were unaffected, removal of paralogs as identified
by TreSpEx appeared to have the greatest effect on support for
some critical nodes. For example, most topologies with both
certain and uncertain paralogs removed had strong support for
sponge monophyly (i.e., ≥ 95% BS) (datasets 12–14 and 18–20 in
Figs. 2 and 3 and Figs. S2F, S3 A, B, and F, and S4 A and B), but
four analyses with only certain paralogs removed recovered low
support (< 90% BS) for sponge monophyly (datasets 5, 7, 9, and
10 in Figs. 2 and 3 and Figs. S1E and S2 A, D, and E).
Because outgroup sampling has the potential to influence

rooting of the animal tree, we explored outgroup sampling as
well. When all outgroups except two choanoflagellates were re-
moved (datasets 5, 11, 15, and 21 in Fig. 2), inferred nonbilaterian
relationships were identical as in analyses we performed with full
outgroup sampling (datasets 5, 11, 15, and 21 in Figs. 2 and 3 and
Figs. S1E, S2E, S3C, and S4C), but support for sponge mono-
phyly decreased. In these analyses the leaf-stability indices for
homoscleromorph and calcareous sponges were less than 0.94,
but in all other analyses they were greater than 0.97 (Fig. S5 F and
G). Regardless, when choanoflagellates were the only outgroup,
ctenophores were still recovered as the deepest split within the
animal tree with 100% BS support. Analyses with all outgroup
taxa removed (datasets 22–25 in Fig. 2) recovered identical re-
lationships among major metazoan lineages as other analyses
(Figs. S4 D–F and S5A). However, we observed low support for
relationships among ctenophores, sponges, and placozoans in
these analyses. This resulted from the long placozoan branch
being attracted to ctenophores in the absence of outgroup taxa as
indicated by bootstrap tree topologies and leaf-stability index for
Trichoplax of less than 0.92, whereas leaf-stability indices were
greater than 0.99 in all other analyses (Fig. S5 F and G).

Discussion
Placement of Ctenophores Sister to all Remaining Animals Is Not
Sensitive to Systematic Errors. Every analysis conducted herein
strongly supported the ctenophore-sister hypothesis (Fig. 3 and
Table 1). A major hurdle to wide acceptance of ctenophores as
sister to other animals has been that different analyses have
yielded conflicting hypotheses of early animal phylogeny (2–9).
Sensitivity to the selected model of molecular evolution has been
especially problematic (2–9). In contrast, both maximum-likeli-
hood analyses using data partitioning and Bayesian analyses
using the CAT-GTR model of our datasets resulted in identical
branching patterns among ctenophores, sponges, placozoans,
cnidarians, and bilaterians. Past critiques of studies that found
ctenophores to be sister to all other animals have emphasized the
CAT model as the most appropriate model for deep phyloge-
nomics because it is an infinite mixture model that accounts for
site-heterogeneity (7, 8, 29). Notably, when the CAT-GTR model
was used here (datasets 6 and 16 in Fig. 2), we recovered cteno-
phores-sister to all other metazoans (Fig. 3 and Fig. S5 B and C).
The argument for LBA (7–10) or saturated datasets (7, 8) as the

reason past studies found ctenophores to be sister to all other an-
imals seems to have been overstated. The recovered position of
ctenophores was identical in analyses with (datasets 1, 2, 8, 12, and
18 in Fig. 2 and Figs. S1 A and B, S2 B and F, and S3F) and without
(datasets 3–7, 9–11, 13–17, and 19–25 in Fig. 2, and Figs. S1 C–F, S2
A and C–E, S3 A–E, S4, and S5 A–C) taxa and genes with high LB
scores, and analyses with the slowest evolving genes (datasets 6 and
16 in Fig. 2 and Fig. S7) also recovered ctenophores sister to all
other animals (Fig. 3 and Figs. S1F, S3D, and S5 B and C). Fur-
thermore, despite the long internal branch leading to the cteno-
phore clade, the position of this lineage did not change in any
analysis including those when outgroups were removed (datasets 5,
11, 15, 21, and 22–25 in Fig. 2 and Figs. S1E, S2E, S3C, and S4 C–
F). If this branch was being artificially attracted toward outgroups,
then employment of different outgroup schemes would be expected
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Fig. 3. Reconstructed maximum-likelihood topology of metazoan relation-
ships inferred with dataset 10. Maximum likelihood and Bayesian topologies
inferred with other datasets (Fig. 2) have identical basal branching patterns
(Figs. S1–S5). Nodes are supported with 100% bootstrap support unless oth-
erwise noted. Support, as inferred from each dataset (Fig. 2), for nodes cov-
ered by black boxes are in Table 1.
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strongly supported Porifera-sister instead (Fig. 1 A–C). In other
words, under the better-fitting site-heterogeneous model, cteno-
phores emerge as sister to all other animals only when the most
distantly related outgroup, Fungi, is included, suggesting Cteno-
phora-sister most likely represents a long-branch attraction artifact.
Repeating the analyses under CAT-GTR also gave preliminary
support for Porifera-sister, but we were unable to run this analysis
to convergence within the time frame of this study (Fig. S1D).

Analysis of the Moroz et al. Phylogenomic Datasets. In the Pleuro-
brachia bachei genome study (5), the Ctenophora-sister hy-
pothesis was obtained from the analysis of two datasets, one of
which was constructed to maximize the number of species and the
other to maximize the number of proteins. Whereas the dataset
emphasizing protein sampling was broadly comparable to the
dataset of Ryan et al. (4), the dataset emphasizing species sampling
(Moroz-3D; Methods) was unique because it included the largest
number of ctenophores sampled thus far. Given that the same
authors have now assembled new datasets (6) that supersede the
protein-rich datasets of Moroz et al. (5) (discussed in the next
section), we only analyzed the species-rich dataset Moroz-3D.
The analysis of Moroz et al. (5) was conducted under the site-

homogeneous Whelan and Goldman (WAG) model (20), which
gave a tree congruent with the Ctenophora-sister hypothesis,
albeit with weak statistical support. However, analyzing the
Moroz-3D dataset using the similar but generally better-fitting
site-homogeneous Le and Gascuel (LG) model (44), we found a
different tree with a better likelihood score (Fig. S2A). This tree
united demosponges and glass sponges as the sister group of all
other animals, followed by ctenophores and then by calcareous
and homoscleromorph sponges. Although statistical support for

this branching order is very low (Fig. S2A), the same is true for
the tree found by Moroz et al. (5). Finally, an analysis of this
dataset using the better-fitting site-heterogeneous CAT-GTR
model (45) supported demosponges, glass sponges, and homo-
scleromorphs as the sister group of all other animals, followed by
ctenophores. However, in this tree, the calcareous sponges are
deeply nested within cnidarians (Fig. S2B), and, furthermore,
this analysis did not converge. The high dissimilarity between
these three trees and the uniformly low support obtained across
all analyses suggest the phylogenetic signal in this dataset is very
weak. This weakness of signal might, among other factors, be re-
lated to massive amounts of missing data, which reach 98% for the
calcareous sponges, the most unstable lineage in this dataset.
Furthermore, Moroz et al. (5) reported that using a subset of their
data consisting only of the most conserved proteins, they were
unable to resolve relationships of the major animal lineages and
could not reject Porifera-sister with statistical tests. Accordingly, we
conclude the Moroz-3D dataset does not provide sufficient signal
for resolving the position of Ctenophora.

Analysis of the Whelan et al. Phylogenomic Datasets. Whelan et al.
(6) assembled 25 datasets differing in protein and species selec-
tion, and recovered Ctenophora-sister with strong support from all
of them. Although they pointed out the importance of using site-
heterogeneous substitution models, as well as the impact of out-
group composition, they did not examine the combined effect of
these factors. That is, all of the outgroup-subsampled datasets
were analyzed exclusively using site-homogeneous substitution
models, whereas the analyses using the better-fitting site-heterogeneous
model were exclusively performed using the full set of outgroups, which
included distantly related Fungi.
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Fig. 1. (A) Phylogeny inferred from Ryan-Choano (4) using the site-heterogeneous CAT model. (B) Phylogeny inferred from Whelan-D16-Choano (6) using
the site-heterogeneous CAT-GTR model. For both analyses, we used the site-heterogeneous model implemented by the original study and limited the
outgroups to include only choanoflagellates (the closest living relatives of animals) (details and justifications are provided in Addressing Biases in Phylogenetic
Reconstruction and Methods). Major groups are summarized, and full phylogenies illustrated are in Figs. S1 and S4C. Nodes with maximal statistical support
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Who are the earliest diverging animals?

Sponges



Evidence for Systematic Error (Bias)
Backbone Tree for All Birds
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These are enormous 
datasets, yet they 

conflict strongly for 
early divergences.



Evidence for Systematic Error (Bias)

These are two high-profile examples, but there are 
many others (we’ll talk about turtles later).

When conflict is this strong, stochastic error is not a 
plausible explanation.

Data is no longer limiting. We are now limited by our 
ability to accurately extract information from the data.
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The guinea-pig is not a rodent
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Are Guinea Pigs Rodents? The Importance of Adequate
Models in Molecular Phylogenetics

Jack Sullivan1'2 and David L. Swofford1

The monophyly of Rodentia has repeatedly been challenged based on several studies of molec-
ular sequence data. Most recently, D'Erchia et al. (1996) analyzed complete mtDNA sequences
of 16 mammals and concluded that rodents are not monophyletic. We have reanalyzed these
data using maximum-likelihood methods. We use two methods to test tor significance of dif-
ferences among alternative topologies and show that (1) models that incorporate variation in
evolutionary rates across sites fit the data dramatically better than models used in the original
analyses, (2) the mtDNA data fail to refute rodent monophyly, and (3) the original interpretation
of strong support for nonmonophyly results from systematic error associated with an oversim-
plified model of sequence evolution. These analyses illustrate the importance of incorporating
recent theoretical advances into molecular phylogenetic analyses, especially when results of
these analyses conflict with classical hypotheses of relationships.

KEY WORDS: inconsistency; maximum likelihood; molecular systematics; rodents; rate het-
erogeneity.

INTRODUCTION

The assertions made in several molecular phylogenetic studies (Graur et al., 1991;
Li et al., 1992; Ma et al., 1993) have led to the growing acceptance of the conclusion
that the order Rodentia is not monophyletic, in spite of the facts that these data sets
essentially provide no significant refutation of the classical hypothesis (e.g., Hasegawa
et al., 1992; Cao et al., 1994), and other molecular studies actually support rodent
monophyly (Martignetti and Brosius, 1993; Porter et al., 1996). Recently, D'Erchia et
al. (1996) suggested that their phylogenetic analyses of complete mtDNA sequences of
16 mammalian species firmly establish that the guinea pig is not a rodent, based on its
placement as a sister taxon to a clade containing Lagomorpha, Carnivore, Primates,
Perissodactyla, and Artiodactyla (including cetaceans), rather than in a clade with mouse
and rat. They claim that this placement both is consistent across phylogenetic reconstruc-
tion methodologies and is supported by "very significant" bootstrap values. Because
nonmonophyly of the rodents would imply a remarkable amount of convergence in mor-

1 Laboratory of Molecular Systematics, MSC, Smithsonian Institution, MRC-534, Washington, DC, 20560.
2To whom correspondence should be addressed at Department of Biological Sciences, University of Idaho,
Moscow, Idaho 83844.
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How might we assess fit?
(1) Use our prior knowledge to ask if the data are reasonable. 

(2) Use our prior knowledge to ask if inferences are reasonable. 

Above are “gut checks”. Very useful, but perhaps subjective. Also 
difficult to have strong priors for complicated data and models. 

(3)  Use your data (all or part) to make a prediction and see if your 
prediction matches what you’ve seen. 

(Posterior Prediction and Cross Validation)



Posterior Prediction

Could             have come from                                 ?P ( , ✓| )

Could the model and priors plausibly have 
given rise to the data?
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Posterior Prediction

Previously proposed statistics based on the data: 

 Multinomial Likelihood (based on frequencies of site patterns) 
 Number of Unique Site Patterns 
 Frequency of Invariant Sites 
 Heterogeneity of Base Frequencies 
 Number of parsimony-inferred “parallel” sites



Posterior Prediction

“We do not like to ask, ‘Is our model true or false?’, since most 
probability models in most analyses will not be perfectly true... 

The more relevant question is, ‘Do the model’s deficiencies have 
a noticeable effect on the substantive inferences?’ “

- Gelman, Carlin, Stern, and Rubin
Bayesian Data Analysis



Posterior Prediction

What about using the inferences provided 
by our data as a test statistic(s)? 



Posterior Prediction
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Topology Test Statistics
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Topology Test Statistics
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Topology Test Statistics
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Branch-Specific Test Statistics
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Branch-Specific Test Statistics
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Branch-length Test Statistics

Marginalizing across topologies

Mean Tree Length = 3.15 
Variance in Tree Length = 2.30



Motivating Results - Simulation
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Motivating Results - Simulation

Topological Error (True - Incorrect)

M
ea

n 
P

-v
al

ue

-20% -10% 0% 10% 20%

0
0.

2
0.

4
0.

6
0.

8
1

0/150

0/6

4/64

15/32
18/25

8/12 7/7 1/1 2/2

-40% -20% 0% 20% 40%
Tree-length Error (True - Incorrect)

6/6 44/44

0/50

48/50

Topology
Tree Length

Reliable

Unreliable



Motivating Results - Empirical
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Motivating Results - Empirical

Doyle et al., 2015, Syst Biol (F1000 Recommended)
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Motivating Results - Empirical

Doyle et al., 2015, Syst Biol (F1000 Recommended)
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Motivating Results - Empirical

Doyle et al., 2015, Syst Biol (F1000 Recommended)
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Active Development!
Our current inference-based statistics are computationally intense 
(lots of MCMC). We are: 

 working on faster approximations for inference statistics 

 conducting baseline simulation studies to establish power  

making the workflow easier and faster (including HPC)



Thoughts on Interpretation

Assessing model fit is probably most useful with big data 

Not meant to be a hypothesis test. We can always reject the fit 
of a model in a strict sense. All models are abstractions. 

 Based on the aspects of our model that don’t fit well, think 
about how to structure new models. Remember, with RevBayes 
you can design your own new models!


