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Some Interests of Mine
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So…genomes, eh?
GTR+I+     seems pretty complicated!  

10 parameters to describe change in 4 nucleotides 

Surely that’s enough.
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Challenge 1: Genes Vary in Rate
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Challenge 2: Genes Vary in Model/Parameters
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Challenge 3: Genes Vary in Topology

 Incomplete Lineage Sorting 

 Hybridization 

 Horizontal Gene Transfer
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Challenge 4: Variation in Gene-Model Fit M

Genes and models should fit together like a hand in a glove. A glove 
abstracts a hand, but in a useful way. 

When fit is poor, the glove may not function properly.



Challenge 4: Variation in Gene-Model Fit M
Nearly all of our models (or at least the ones we usually consider) still 
assume a lot of things: 

• Independence of sites 

• Constant site rates across the tree 

• Constant base frequencies across the tree 

• Consistent evolutionary dynamics across the tree



Challenge 5: Non-homology of sites and genes M

An alignment is a statement of homology.  

We are saying that we are certain that nucleotides in a column have a 
common ancestor that diverged due to a speciation event (usually). 

This is commonly violated in at least two circumstances: 

• Alignments can be uncertain 

• Paralogy (can exert undue influence)



B M

Rate 

Topology 

Model Parameters 
(evolutionary dynamics)

Absolute Model Fit 
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Types of Variation Across Genes



So…how do we deal with this variation?

We develop elegant models that relax these assumptions! 

Now we do 3 things with our models: 

• Select the best available model (model selection) 

• Critically evaluate the fit of this model (model adequacy) 

• Accept, refine, or reject (the art)
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Model Selection
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The Fundamental Tradeoff



Model Selection
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Model too simple! 
We’re misinterpreting the data.



Model Selection
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Model too complicated! 
We don’t have enough information.



Model Selection
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The Sweet Spot



Model Selection
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Bias and Variance can be traded off in different ways. 

This leads to multiple criteria for model selection.



The Likelihood
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The Likelihood Function

P(            |     ,         )✓
Read as “the probability of the sequence data  

given a tree and model”. 

The quantity by which the data provide information. 

Compares how well different trees and models predict the 
observed data or as a “measure of relative surprise”.
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More Parameters = Better Likelihood
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ML-based Model Selection
If the more complex model always gives a 

likelihood that is at least as good as a 
simpler model, even if the simpler one is 
true, we need ways to assess whether 

it’s enough better to warrant our attention.
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ML-based Model Selection
If the more complex model always gives a 

likelihood that is at least as good as a 
simpler model, even if the simpler one is 
true, we need ways to assess whether 

it’s enough better to warrant our attention.

Akaike’s Information Criterion (AIC) 

Bayesian Information Criterion (BIC) 

Likelihood Ratio Test (LRT) Different penalties for  
extra parameters.



ML-based Model Selection

Akaike’s Information Criterion (AIC)
Minimum AIC preferred.

Penalty for more  
parameters (   ).

Likelihood term becomes  
more negative when      worse.

AIC = 2k � 2ln(L̂)

k L̂



ML-based Model Selection
AIC = 2k � 2ln(L̂)

BIC = ln(n)k � 2ln(L̂)

LRT
Hypothesis test

Pairwise

Difference in 
free parameters



Bayesian Model Selection
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Bayesian Model Selection

P (✓|D) =
P (D|✓)P (✓)

P (D)
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P (D|✓,M)P (✓|M)

P (D|M)



Bayesian Model Selection

P (✓|D) =
P (D|✓)P (✓)

P (D)

Marginal Likelihood
Probability of the data given the model, considering 

uncertainty in model parameters.

P (✓|D,M) =
P (D|✓,M)P (✓|M)R
P (D|✓,M)P (✓|M)d✓



Bayesian Model Selection

P (✓|D) =
P (D|✓)P (✓)

P (D)

Marginal Likelihood
Essentially, the weighted average likelihood, weighted by 

the prior probability of different parameter values.

P (✓|D,M) =
P (D|✓,M)P (✓|M)R
P (D|✓,M)P (✓|M)d✓



Marginal Likelihood Example

Sp. A Sp. B

Evolutionary Distance

Compare JC and K80 models

v: edge length 
estimated in both models 

k: transition-transversion ratio 
estimated in K80 and fixed at 1 for JC

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016



Marginal Likelihood Example

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 97

Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)sequence length = 500 sites 
true branch length = 0.15 
true kappa = 5.0

K80 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.
JC ( just 1D line)

K80 (whole 2D plane)

v

Simulation Conditions 
Sequence length: 500 bp 

True v: 0.15 
True k: 5.0

k

Prior is flat over whole area.



Marginal Likelihood Example

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 97

Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)sequence length = 500 sites 
true branch length = 0.15 
true kappa = 5.0

K80 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.
JC ( just 1D line)

K80 (whole 2D plane)

v

Simulation Conditions 
Sequence length: 500 bp 

True v: 0.15 
True k: 5.0

k

Prior is flat over whole area.

K80 wins!



Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 98

Likelihood Surface when JC true

sequence length = 500 sites 
true branch length = 0.15 
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.

Marginal Likelihood Example

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016

JC ( just 1D line)

K80 (whole 2D plane)

v

Simulation Conditions 
Sequence length: 500 bp 

True v: 0.15 
True k: 1.0

k

Prior is flat over whole area.



Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop) 98

Likelihood Surface when JC true

sequence length = 500 sites 
true branch length = 0.15 
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:


(branch length)(trs/trv rate ratio)

⌫

Assume joint prior is 
flat over the area 

shown.

Marginal Likelihood Example

Example taken from Paul Lewis - Workshop on Molecular Evolution 2016

JC ( just 1D line)

K80 (whole 2D plane)

v

Simulation Conditions 
Sequence length: 500 bp 

True v: 0.15 
True k: 1.0

k

Prior is flat over whole area.

JC wins!



Marginal Likelihood Example

Important contrast with ML-based model selection: by 
averaging, rather than maximizing, marginal likelihoods 

automatically account for extra parameters.

More complicated models can have lower marginal likelihoods.



Calculating Marginal Likelihoods

Easy Approach 1 - Sample from the prior
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Calculating Marginal Likelihoods

Prior
Likelihood
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Easy Approach 1 - Sample from the prior



Calculating Marginal Likelihoods

Prior
Likelihood
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Take average of blue dots

Easy Approach 1 - Sample from the prior



Calculating Marginal Likelihoods

Prior
Likelihood

Take average of blue dots
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Calculating Marginal Likelihoods

Prior
Likelihood

Take average of blue dots??!!
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We’d like to make sure we’re 
sampling high likelihood parts of 
space with reasonable frequency.

Easy Approach 1 - Sample from the prior



Calculating Marginal Likelihoods
Less-Naive Approach 2- Sample from the posterior

Prior

Posterior 
(~Likelihood)

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parameter

P
ro

ba
bi

lit
y 

D
en

si
ty

-2 -1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parameter

P
ro

ba
bi

lit
y 

D
en

si
ty

Since we’re supposed to be 
integrating across the prior, we 
need to correct for the fact that 

our samples are from the posterior.



Calculating Marginal Likelihoods

The Harmonic Mean Method

What’s an important property of harmonic means? 

Anyone remember discussing bottlenecks in pop gen?

1

ML
=

1

L1
+

1

L2
+ . . .+

1

L3

Less-Naive Approach 2- Sample from the posterior



Calculating Marginal Likelihoods

The reverse problem to our first 
naive approach! 

Rarely sampled low likelihoods 
have a big influence on estimates. 

Very unstable.
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Less-Naive Approach 2- Sample from the posterior



Calculating Marginal Likelihoods

Approach 3* - Sample from a series of distributions

Steppingstone or path sampling



Steppingstone Sampling

�

Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop)

Estimating the marginal likelihood

99

f(D) is the marginal likelihood 

Estimating f(D) is equivalent to estimating 
the area under the curve whose height is, 
for every value of θ, equal to f(D|θ) f(θ)

Equivalent to estimating 
the area under this curve.

P (D|✓)P (✓)

P (D) =

Z
P (D|✓)P (✓)

Steppingstone slides adapted from Paul Lewis - Workshop on Molecular Evolution 2016



Steppingstone Sampling
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Paul O. Lewis (2016 Woods Hole Molecular Evolution Workshop)

Estimating the marginal likelihood

102

Prior

Unnormalized posterior

MCMC provides a way to sample from any 
distribution. The orange points are values of 
θ drawn from the Beta(2,2) prior. 

Marginal likelihood 
(area under the unnormalized 
posterior)

1.0 
(area under prior density)

The fraction of dots inside the unnormalized 
posterior is an estimate of this ratio:

Would work better if 
unnormalized posterior 

represented a larger 
fraction of the area under 

the prior...

Prior

Unnormalized Posterior

P (✓)

P (D|✓)P (✓)

An alternative way to think about our first 
approach (sampling directly from the 

prior) is to sample points from the prior 
(area=1.0), then ask what proportion fall 

under the curve of interest.

Unfortunately, not many! 
As before, this is unstable.



Steppingstone Sampling
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Stepping-stone method

103
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c0.0
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c0.9

◆ ✓
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◆ ✓
c0.5
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◆ ✓
c0.4

c0.3

◆ ✓
c0.3

c0.2

◆ ✓
c0.2

c0.1

◆ ✓
c0.1

c0.0

◆

Sample from this distribution

See what fraction of samples are 
under this density curve

This fraction is an 
estimate of this ratio

(estimates a series of ratios that each 
represent smaller jump)

Let’s try it in steps!

Sample from this distribution

See what fraction of samples 
are under this curve

That fraction is an 
estimate of this ratio

P (D)



Power Posteriors
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Stepping-stone method
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Sample from this distribution

See what fraction of samples are 
under this density curve

This fraction is an 
estimate of this ratio

(estimates a series of ratios that each 
represent smaller jump)

P (D)

1

P (D|✓)� / P (D|✓)�P (✓)

PriorPosterior

� = 0� = 1



Power Posteriors
c1.0
c0.0

= Stable estimate of marginal likelihood!

But it requires a specific type of analysis, 
independent of standard MCMC.



Bayes Factors
Posterior Prior

Likelihood

Normalizing Constant 
(Marginal Likelihood)



Bayes Factors

P (H1|D)

P (H2|D)
=

P (H1)P (D|H1)
P (D)

P (H2)P (D|H2)
P (D)
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Bayes Factors

P (H1|D)

P (H2|D)
=

P (H1)P (D|H1)

P (H2)P (D|H2)



Bayes Factors

P (H1|D)

P (H2|D)
=

P (H1) P (D|H1)

P (H2) P (D|H2)

Posterior Odds Prior Odds Bayes Factor



Bayes Factors

Posterior OddsPrior Odds Bayes Factor

P (H1) P (D|H1)

P (H2) P (D|H2)
=

P (H1|D)

P (H2|D)



Bayes Factors

Robert E. Kass & Adrian E. Raftery (1995). "Bayes Factors". Journal of the American Statistical Association. 90:791

2ln(BF) BF Strength of evidence

0-2 1-3 Barely worth mentioning.

2-6 3-20 Positive

6-10 20-150 Strong

>10 >150 Very Strong



Bayes Factors

For now, we’re going to use these to compare different 
models of sequence evolution as our hypotheses. 

However, BFs can also be used for other hypotheses, 
like topological relationships (this afternoon).

A

C

G

T



Bayes Factors

Tutorial (in just a second)



Or…don’t choose a model!
Reversible Jump MCMC

Instead of picking a model, include MCMC moves that jump 
between. Integrate out uncertainty about which model is best. 

This is a Bayesian form of model averaging. 

We already do this for trees. Can also do this for models.



Or…don’t choose a model!
Reversible Jump MCMC

*Disclaimer: Setting up proper reversible jump 
moves can often be very challenging.

Instead of picking a model, include MCMC moves that jump 
between. Integrate out uncertainty about which model is best. 

This is a Bayesian form of model averaging. 

We already do this for trees. Can also do this for models.


