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Big Data in Phylogenetics

Dealing with the deluge
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skipping ~30 figures
that all show growth of
data or decreasing cost




a. Ventebrale sequences in GenBank (milions)
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PERSPECTIVE

Big Data: Astronomical or Genomical?

Growth of DNA Sequencing
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To what end?

“We think big data is what everyone cares about.
s not.
ts stories.”

- Dr. Jessica Utts
President, American Statistical Association

The goal is to gather ‘sufficient’ data in order to answer a question robustly.
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The question is what is interesting.
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To what end?

“We think big data is what everyone cares about.
s not.
ts stories.”

- Dr. Jessica Utts
President, American Statistical Association

The goal is to gather ‘sufficient” data in order to answer a question ‘robustly.”
The question is what is interesting.
This is no different than its always been.
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A case study

o A very specific question:

o \What are the phylogenetic affinities of turtles?

o Brings up more general issues:

o How do we approach difficult phylogenetic problems?

o How should we approach difficult phylogenetic problems?
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Turtle Phylogenetics

o Qverarching problem:

o Where do turtles sit in the amniote tree?

Mammals

Archosaurs

| Lepidosaurs




Osteology

o Early approaches relied on osteology (primarily of the skull

Anapsid Diapsid Synapsid
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Osteology

> Early approaches relied on osteology (primarily of the skull)
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Osteology

o Primary issue with this hypothesis
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More osteology
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Molecular Information

o Mitochondrial data

Zardoya and Meyer 1998 PNAS .. ~
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Molecular Information

o Nuclear data

lwabe et al. 2004 MBE
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Summary




Turtle Genomics

o 3 genome consortia

o Several more independent studies
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Phylogenomics
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Shaffer et al. 2013 Genome Biol
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Phylogenomics

o All analyses agree!




MicroRNA Result
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Summary

o Ugh...so what do we do?




Summary

o Ugh...so what do we do?




Data in Phylogenetics

o Let’s take a step back.

o How have we been approaching this (and most other) phylogenetic
questions?

4 nuclear genes 11 nuclear genes

— Turtles

- Crocodilians — Turtles

__ Birds Crocodilians

— Tuataras — Birds
Squamates [ Squamates

— Primates | — Primates

__ Rodents : , —— Rodents

Hedges and Polling 1998 Science
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Data in Phylogenetics

o Let’s take a step back.

o How have we been approaching this (and most other) phylogenetic

questions?

4 nuclear genes

— Turtles

— Crocodilians
— Birds

— Tuataras
Squamates
— Primates

— Rodents

A

11 nuclear genes

— Turtles
Crocodilians
—— Birds

" Squamates

| — Primates

: , —— Rodents

0 0.1

Hedges and Polling 1998 Science
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Phylogenomics

o |nferences result from both data and the model

TAGGT

GGT Frequencies = (A, C, T,6)

Prob( TTGGT ’ﬂg
o%‘
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Why does this matter?

o In developing a statistical model for a problem, we

inevitably make a tradeoff
Number of Parameters
Simple Complex
[ eve e
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Probability Density
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Why does this matter?

o In developing a statistical model for a problem, we

inevitably make a tradeoff
Number of Parameters
=
Amount of Data
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Why does this matter?

o In developing a statistical model for a problem, we

inevitably make a tradeoff
" 1 gene
= - 10 genes
Number of Parameters 1000 genes

Power

Amount of Data
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Why does this matter?

o In developing a statistical model for a problem, we

inevitably make a tradeoff
" 1 gene
= - 10 genes
Number of Parameters 1000 genes

Power

Amount of Data
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Why does this matter?

o In developing a statistical model for a problem, we

inevitably make a tradeoff
" 1 gene
= - 10 genes
Number of Parameters 1000 genes

Power

Amount of Data
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Why does this matter?

o The point.

Bias
Variance

Number of Parameters

Our data centric
view focuses on this

Power

Amount of Data



Why does this matter?

o The point.

But this is our
bigger problem

Bias
Variance

Number of Parameters

Power

Amount of Data



How do we know it's a bigger problem?

ZR\EERE
M



How do we know it's a bigger problem?
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Where's the disagreement coming from?



How do we know it's a bigger problem?

CrossMark
& click for updates

A critical appraisal of the use of microRNA data
in phylogenetics

Robert C. Thomson®", David C. Plachetzki®, D. Luke Mahler¢, and Brian R. Moore®

PNAS PLUS

eology

<@ 2Department of Biology, University of Hawai'i at Manoa, Honolulu, HI 96822; "Department of Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham, NH 03824; and “Department of Evolution and Ecology, University of California, Davis, CA 95616

DNA

SEE COMMENTARY

‘ Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved July 2, 2014 (received for review April 21, 2014)

[=) Recent progress in resolving the tree of life continues to expose =~ MicroRNAs originate from random hairpin sequences in intronic

[\
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Where's the disagreement coming from?

nuDNA

* Phylogenomic
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Big data turtle studies

o (Chiarietal. (2012)

248 transcriptomic loci
12 taxa

o (rawford et al. (2012)

1,145 UCEs
10 taxa

o Fongetal.(2012)

75 Sanger-sequenced loci
129 taxa

o Luetal (2013)

1,638 transcriptomic and genomic loci
11 taxa
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Bipartition Bayes Factors

/A%\

Marginal likelihood Marginal likelihood
with AB | CDE without AB | CDE

N\ /

Bayes Factor



A Note on Extreme Probabilities

O. ] p
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Brown and Thomson 2017
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A Note on Extreme Probabilities

Archosaur +
Turtle
Monophyly

Shaffer et al.

0.8 1.0

0.6

Posterior Probability
0.4

0.2

0.0

The probability of
observing these
sequences is 100
fold lower if

monophyly is true.
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A Note on Extreme Probabilities

< .
. The probability
Archosaur + >c>' 7 of observing
Tort = these
urtle § © | sequences is
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A Note on Extreme Probabilities

1/1,000,000,000,000,000,000,000,000,000

That's 27 zeroes!

It you played a lottery every minute with that chance of
winning, you still probably wouldn't win, unless you
played for...

the age of the universe®190,258,751,903

)
Jeremys Analogy
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A Note on Extreme Probabilities
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Support varies across branches of the tree

Amniota

-

Chiari et al. mm

Mammalia
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Support varies across branches of the tree

Amniota

Chiari et al. mm
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Support varies across branches of the tree

Turtle Placement
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All of these strongly supported by this dataset.
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Brown and Thomson 2017
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Support varies across branches of the tree

Turtle Placement
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Support varies across branches of the tree

Turtle Placement

2 outliers Chiari 0 L
A &A

w 1T T 32 T'T-T-éﬁ%ﬁ .....

\6‘ \e‘ \e‘ \e( \e( \eV xef \e‘s \){S ‘d (\ \es a\ \es \es
\S \S \S \5 \S \S \S \O o\ o\ \\a (\ m NG (\
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This dataset supports turtles as sister to crocodilians.
But what's up with these outliers?
How influential are they?

Brown and Thomson 2017
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Both looR like paralogs

Probable
Gene Duplications
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Strong influence

Chiari et al.

Brown and Thomson 2017



Strong influence

w0 [ W

g Chiari et al.
without 2 outliers
2@ g%/%@ genes remain
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Strong influence

w0 [ W

g Chiari et al.
without 2 outliers
2@ 4@46/248 genes remain
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Take homes

o More data does not necessarily lead to more accuracy, or
{0 consensus

o Alot of phylogenomic progress is actually about figuring
out how to model data well, not collect more data per se
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Some Possible Ways Forward

o Embrace the computational challenge



Embrace the computation

o Analyses need not finish quickly

o Advances in computation help a lot here
o parallel architectures and code
o fast computation libraries

o availability of compute resources
> new methods on the horizon (HMC, IDR)



Embrace the computation

D)
- O
Compute
resources

O P Storage
resources
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Embrace the computation

£ Compute Resources

e & @

Name Status CPUs Peak TFlops Utilization Running Jobs Queued Jobs Other Jobs
Stampede &

_ v Healthy 102400 9600.0 562 2310 161
/& User Guide
Comet &

, v Healthy 47616 2000.0 1487 360 379
/& User Guide
XStream &

v Healthy 1300 1001.7 303 85 415

/& User Guide
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XSEDE jobs by field for 2016

Systematic and Population Biology

All 110 others
2,799,939

Physics
535,350

Physical Chemistry
653,247 yod

Astronomical Sciences /4
764,805

Materials Research
1,040,644

Biological Sciences
1,079,705

Biophysics
1,135,806

Biochemistry and Molecular

~ Behavioral and Neural Sciences
Structure and Function

22,787,282
lg)&z’asgsaslactic Astronomy and
Cosmology J
2,023,151 . - /
Integrative Biology and
Neuroscience
6,250,787

I Behavioral and Neural Sciences [l Integrative Biology and Neuroscience I Extragalactic Astronomy and Cosmology
I Biochemistry and Molecular Structure and Function

| Biophysics [l Biological Sciences [l Materials Research
B Astronomical Sciences Physical Chemistry [l Physics All 110 others
016-01-01 to 2016-12-31 Src: XDCDB. Powered by XDMoD/Highcharts
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XSEDE users by field for 2016

1. Materials Research

2. Biophysics

3. Advanced Scientific Computing

4. Chemistry

5. Computer and Computation Research
6. Training

7. Biochemistry and Molecular Structur...
8. Computer and Information Science an...
9. Astronomical Sciences

10. Physical Chemistry

11. Avg of 110 others
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New Tools on the Horizon

o More complex models

o faster estimation of marginal likelihoods. e.g., Inflated
Density Ratio

o More efficient sampling. e.g., Hamiltonian Monte Carlo



A Comparison of two
Markov Chain Monte Carlo
samplers




Some Possible Ways Forward

o Embrace the computational challenge

- (et very picky about our data. Careful and detailed data
exploration is your friend.



Some Possible Ways Forward

o Embrace the computational challenge

- (et very picky about our data. Careful and detailed data
exploration is your friend.

o (arefully consider tradeoffs between speed and
approximation
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Crocodilian

A Archosaur
10 Aves
' W Sauropsid
Lepidosaur
B
—(0O—{1.0 Other
CES 1322 genes 8 taxa
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Dod y P

75 genes 129 taxa

Brown and Thomson unpublished figure
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