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Maximum Likelihood and Bayesian Inference

What is there to disagree about?

Not much, actually:
• model-based statistical inference 
• observations are random variables 
• likelihood function extracts information from data to estimate parameters



Maximum Likelihood and Bayesian Inference

Lots to love about maximum-likelihood estimation

Desirable statistical properties
• consistent estimator

Explicit with respect to model assumptions

Convenient and objective model selection/hypothesis testing framework

Some less desirable aspects of maximum-likelihood estimation

Non-intuitive meaning of likelihood

Frequentist perspective can be awkward for some inference problems

Less amenable to EDA scenarios

Accommodating uncertainty can be less than natural

• asymptotically efficient estimator



Maximum Likelihood and Bayesian Inference

Maximum-likelihood perspective on parameters:

Data are random variables, but the parameters are fixed

Bayesian perspective on parameters:

Data are random variables, and so are the model parameters

If we treat the parameters are random variables, what do we have to specify?



Bayesian Inference

A priori…

We usually (i.e., always) have prior beliefs, so why not be explicit about it?
• this is consistent with making assumptions clear (model-based inference)

When relevant prior information is available, it can be naturally incorporated 
• this is consistent with the way we behave as rational beings

It can be non-trivial to specify our prior beliefs as probability distributions
• we might attempt to define vague priors in some cases
• we can (and should) assess the impact of our prior assumptions

Concerns about the prior sensitivity are largely philosophical
• the posterior is typically dominated by the likelihood function
• when this is not the case, the ability to detect prior sensitivity is a good thing!



Outline

What’s the deal with priors?
I. The Bayesian hard sell

Metropolis-Hastings algorithm
II. Approximating the posterior probability with MCMC

Learning to embrace your inner Bayesian

Metropolis-coupled algorithm



A G

C T

1. Tree

II. Phylogenetic model parameters
topology

€ 

τ = τ1,τ2,...,τ(2s−5)!!( ) !
branch lengths

€ 

ν = ν1,ν2,...,ν(2S−3)( ) !

relative substitution rates

€ 

θ = θAC ,θAG ,θAT ,θCG,θCT ,θGT( )!
2. Model of character change

€ 

Φ = θ,π,α,T( ) !

stationary frequencies

€ 

π = π A ,πC ,πG,πT( )!

III. Phylogenetic likelihood function

IV. Priors on parameters
~Uniform
~Dirichlet (1,...,1)

~Dirichlet (1,1,1,1)

V. Posterior Probability

~Dirichlet (1,1,1,1,1,1)

posterior probability
f(Parameter | Data) =

f(Data | Parameter)f(Parameter)

f(Data)

likelihood function prior probability

marginal likelihood

f(⌧, ⌫,� | X) =
f(X | ⌧, ⌫,�)f(⌧, ⌫,�)

f(X)

Bayesian Inference of Phylogeny (on one slide)

Assume an alignment, X, of N sites for S species:

I. Data
X = (x1, x2, x3, . . . , xN )



1. If the proposed step will take the robot uphill, it automatically takes the step

Pr[Accept] = 1�

Metropolis et al. (1953); Hastings (1970)

Approximating the Joint Posterior Probability Density 
using MCMC 

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density 
and will explore parameter space by following these simple rules:
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Pr[Accept] = new height 
                       old height�
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    the proposed location by the current location, and it only takes the step if the 
    quotient is less than a uniform random variable, Uniform[0,1] 
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2. If the proposed step will take the robot downhill, it divides the elevation of 
    the proposed location by the current location, and it only takes the step if the 
    quotient is less than a uniform random variable, Uniform[0,1] 

3. The proposal distribution is symmetrical, so Pr[A     B] = Pr[B     A]�

1. If the proposed step will take the robot uphill, it automatically takes the step
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Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density 
and will explore parameter space by following these simple rules:



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=1.0)

er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=1.0)

alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=1.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 48 
moves per iteration

parameter
prior distribution proposal  

weights

Metropolis et al. (1953); Hastings (1970)

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=2.0)

er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=2.0)

alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=2.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 96 
moves per iteration

parameter
prior distribution proposal  

weights

Metropolis et al. (1953); Hastings (1970)

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )
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The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=4.0)

er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=4.0)

alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=4.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 192 
moves per iteration

Metropolis et al. (1953); Hastings (1970)

parameter
prior distribution proposal  

weights

Metropolis et al. (1953); Hastings (1970)

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )
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The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities



pi ~ dnDirichlet(pi_prior)
#moves for base frequencies
moves[++mi] =  mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=2.0)

er ~ dnDirichlet(er_prior)
#moves for exchangeability rates
moves[++mi] =  mvSimplexElementScale(er, alpha=10.0, tune=true, weight=4.0)

alpha ~ dnUnif( alpha_prior_min, alpha_prior_max )
#moves for alpha-shape parameter
moves[++mi]  =  mvScale(alpha, lambda=0.8, tune=true, weight=8.0)

Running MCMC simulation
The simulator uses 48 different moves in a random move schedule with 192 
moves per iteration

Metropolis et al. (1953); Hastings (1970)

parameter
prior distribution proposal  

weights

Metropolis et al. (1953); Hastings (1970)

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )
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The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities



4. Calculate the probability of accepting the proposed change:

€ 

R =min 1, f X |Θ'( )
f X |Θ( )

⋅
f Θ'( )
f Θ( )

⋅
f Θ |Θ'( )
f Θ' |Θ( )
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' 
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likelihood ratio prior ratio proposal ratio 

Metropolis et al. (1953); Hastings (1970)

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

3. Propose a new value for the selected parameter via the proposal mechanism:
• each parameter has a prior probability distribution of a specific form (uniform, etc.)
• each prior probability distribution has one or more proposal mechanisms



6. Repeat steps 2–5 an ‘adequate’ number of times

Metropolis et al. (1953); Hastings (1970)

5. Generate a uniform random variable, U[0,1], accept if R > U

4. Calculate the probability of accepting the proposed change:

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )

Approximating the Joint Posterior Probability Density 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The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

3. Propose a new value for the selected parameter via the proposal mechanism:
• each parameter has a prior probability distribution of a specific form (uniform, etc.)
• each prior probability distribution has one or more proposal mechanisms
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II. Phylogenetic model parameters
topology
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τ = τ1,τ2,...,τ(2s−5)!!( ) !
branch lengths
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ν = ν1,ν2,...,ν(2S−3)( ) !

relative substitution rates

€ 

θ = θAC ,θAG ,θAT ,θCG,θCT ,θGT( )!
2. Model of character change

€ 

Φ = θ,π,α,T( ) !

stationary frequencies

€ 

π = π A ,πC ,πG,πT( )!

III. Phylogenetic likelihood function

IV. Priors on parameters
~Uniform
~Dirichlet (1,...,1)

~Dirichlet (1,1,1,1)

V. Posterior Probability

~Dirichlet (1,1,1,1,1,1)

f(Parameter | Data) =
f(Data | Parameter)f(Parameter)

f(Data)

f(⌧, ⌫,� | X) =
f(X | ⌧, ⌫,�)f(⌧, ⌫,�)

f(X)

Bayesian Inference of Phylogeny (on one slide)

Assume an alignment, X, of N sites for S species:

I. Data
X = (x1, x2, x3, . . . , xN )
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Discrete uniform prior on topologies 
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0 1 

Beta (1,1) 

Beta (20,20) 

Beta (10,40) 

Beta (0.5,0.5) 

Approximating the Joint Posterior Probability Density 
using MCMC 

Beta prior
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Approximating the Joint Posterior Probability Density 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Dirichlet prior

Generalization of the beta often used for proportions
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Branch Length 

Default Exponential Branch-Length Prior (!=10, mean=0.1) 
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Branch length

Approximating the Joint Posterior Probability Density 
using MCMC 

Exponential priors

Often used for branch lengths
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Approximating the Joint Posterior Probability Density 
using MCMC 

Gamma prior

May be used for tree length



6. Repeat steps 2–5 an ‘adequate’ number of times

Metropolis et al. (1953); Hastings (1970)

5. Generate a uniform random variable, U[0,1], accept if R > U

4. Calculate the probability of accepting the proposed change:

1. Initialize the chain with some random values for all parameters,  
    including the tree with branch lengths,               . 

€ 

Θ = τ,ν( )

Approximating the Joint Posterior Probability Density 
using MCMC 

The Metropolis-Hastings algorithm

2. Select a parameter to update (alter) according to the proposal probabilities

3. Propose a new value for the selected parameter via the proposal mechanism:
• each parameter has a prior probability distribution of a specific form (uniform, etc.)
• each prior probability distribution has one or more proposal mechanisms
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pi ~ dnDirichlet(pi_prior)
moves[++mi] = mvSimplexElementScale(pi, alpha=10.0, tune=true, weight=2.0)

Approximating the Joint Posterior Probability Density 
using MCMC 

Dirichlet proposal mechanism
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epsilon ~ dnUnif( epsilon_prior_min, epsilon_prior_max )
moves[++mi] = mvSlide(epsilon, delta=0.8, tune=true, weight=3.0)

Approximating the Joint Posterior Probability Density 
using MCMC 

Sliding-window proposal mechanism
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br_lens[i] ~ dnExponential(10.0)
moves[++mi] = mvScale(br_lens[i],lambda=1,tune=true,weight=1)

Approximating the Joint Posterior Probability Density 
using MCMC 

Multiplier proposal mechanism



Metropolis et al. (1953); Hastings (1970)
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Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

temperature
chain 0.25 0.20 0.15 0.10

0 1.00 1.00 1.00 1.00
1 0.80 0.83 0.87 0.91
2 0.67 0.71 0.77 0.83
3 0.57 0.63 0.69 0.77

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)



chain 0 (1.00)
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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)
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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)



chain 0 (1.00)
chain 1 (0.83)
chain 2 (0.71)

Approximating the Joint Posterior Probability Density 
using Metropolis-Coupled MCMC 

The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)
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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)
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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• the incremental heating ‘flattens’ the posterior, allowing chains to more  
readily traverse regions of low probability

• posterior of chain i is raised to a power: the heat of chain i = 1/(1 + iT)
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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

• we compute the acceptance probability of the proposed swap 
• if accepted, the chains swap positions (and in computer memory)

3. At prescribed intervals, two chains are randomly selected to swap.



chain 0 (1.00)
chain 1 (0.83)
chain 2 (0.71)
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Approximating the Joint Posterior Probability Density 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The MC3 algorithm

1. Initialize N independent M-H MCMC chains with random values for all parameters.
2. The chains are incrementally heated, such that the first chain is cold.

3. At prescribed intervals, two chains are randomly selected to swap.

4. Only samples from the cold chain are used to approximate the posterior.



Samples from the MCMC simulation approximate the joint posterior

The frequency of sampled parameter values provides a valid estimate of the  
    posterior probability of that parameter

• e.g., the frequency of a sampled clade provides an estimate of its nodal probability

We can query the joint posterior with respect to any individual parameter of interest:  
    the marginal posterior probability

Approximating the Joint Posterior Probability Density 
using MCMC 



Samples from the MCMC simulation approximate the joint posterior

Approximating the Joint Posterior Probability Density 
using MCMC 

Each sample includes the values of all model parameters.



Samples from the MCMC simulation approximate the joint posterior

Approximating the Joint Posterior Probability Density 
using MCMC 

Each sample includes the values of all model parameters.



Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can query the joint distribution marginally with respect to any parameter.



Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can do this by simply constructed a histogram for any column in the file 
    this provides an estimate of its marginal posterior probability density
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Samples from the MCMC simulation approximate the joint posterior

We can do this by simply constructed a histogram for any column in the file 
    this provides an estimate of its marginal posterior probability density
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Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can easily summarize aspects of the marginal posterior probability density: 
    e.g., to summarize the 95% credible interval.
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Approximating the Joint Posterior Probability Density 
using MCMC 

Samples from the MCMC simulation approximate the joint posterior

We can easily summarize aspects of the marginal posterior probability density: 
    e.g., or the probability within some arbitrary interval of interest (0.6–0.8).
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Samples from the MCMC simulation approximate the joint posterior

We can easily summarize aspects of the marginal posterior probability density: 
    e.g., or we can summarize the highest posterior density (HPD) interval.
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    e.g., or we can summarize the highest posterior density (HPD) interval.


