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What is likelihood?

An Introduction to the Likelihood Function

The likelihood is a quantity that is proportional to the probability of  
   observing/realizing the data under a fully specified model/hypothesis.
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The likelihood is a score that measures the fit of the model to the data, providing a  
    basis for comparing different hypotheses/parameter values on the same data 

For phylogenetic problems, the likelihood is proportional to the probability of  
   observing the sequence alignment, X, under a fully specified phylogenetic model.

The likelihood is a quantity that is proportional to the probability of  
   observing/realizing the data, X, under a fully specified model/hypothesis,   .

What is likelihood?

An Introduction to the Likelihood Function
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OK, so what does likelihood really mean?

Consider a simple simulation experiment to develop our intuition

Imagine we have a fully specified phylogenetic model for four species:

I II III IV

An Introduction to the Likelihood Function
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The stationary frequencies have been estimated from the rate matrix:

What is the likelihood of observing the site pattern under this model?

The four species have the following site pattern: TTGT

OK, so what does likelihood really mean?

An Introduction to the Likelihood Function
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The stationary frequencies have been estimated from the rate matrix:

What is the likelihood of observing the site pattern under this model?

The four species have the following site pattern: TTGT

OK, so what does likelihood really mean?

An Introduction to the Likelihood Function

We randomly selected state C
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What is the likelihood of observing the site pattern under this model?

Simulate histories along each branch in a pre-order traversal
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We repeat the simulation 100,000,000 million times and record the frequency of  
    outcomes that match the observed tip states.

I II III IV
T T G T

The observed site pattern, TTGT, is one of 44  = 256 possible site patterns.

What is the likelihood of observing the site pattern under this model?

The four species have the following site pattern: TTGT

OK, so what does likelihood really mean?

An Introduction to the Likelihood Function
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Number of Changes

The probability includes all of the possible histories that can give rise to the data.

What is the likelihood of observing the site pattern under this model?

The four species have the following site pattern: TTGT

OK, so what does likelihood really mean?

An Introduction to the Likelihood Function

Of the 100,000,000 simulations, 850,358 realize the observed data (TTGT);  
    the estimated probability of the observed data is therefore 0.00850358.



I II III IV
T T G T

Using Monte Carlo simulation to estimate site likelihood is pedagogical,  
    but too inefficient for the analysis of real data.

e.g., there are >1,000,000 possible site patterns for a tree with 10 species.

What is the likelihood of observing the site pattern under this model?

The four species have the following site pattern: TTGT

OK, so what does likelihood really mean?

An Introduction to the Likelihood Function
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Species Sequence data

Species I     TCG--CACCGGCGCAGTCA....
Species II    TCGTTCA--GGCG--GTCA....
Species III   GCGTTCACCGGCGCAGTCA....  
Species IV   TCGTTCACCGGCGCAGTCA....

How Do We Calculate the Likelihood?
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How Do We Calculate Site Likelihoods?

We could calculate the probability of observing the site 
    pattern TTGT by summing over all possible ancestral- 
    state configurations for internal nodes (j, k, l) that  
    could give rise to the observed states
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TT T G T

Even if a computer could evaluate 1 billion 
    configurations/second, the calculation would take  
    way too long …

I II III IV

i

0.15

0.15

0.05

0.050.05
j

k

0.15

For example, a tree with 100��������
���(S – 1) = 99

Brute-force solution

How Do We Calculate Site Likelihoods?

Although more efficient than Monte Carlo simulation,  
    this approach is too expensive to be practical.

internal nodes, and so entails 499 = 4.02 x 1059 

����possible ancestral-state configurations
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127,000,000,000,000,000,000,000,000,000,000,000,000,000 
   �YEARS!!!
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The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

Make the math mirror the tree to avoid redundant calculations.

Joe Felsenstein (c.1981) 
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The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

Make the math mirror the tree to avoid redundant calculations.

Multiple summations over ancestral-state configurations 
    at internal nodes are moved as far to the right as 
    possible.
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to this (12 evaluations):

The pruning algorithm reduces this (64 evaluations):

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

Make the math mirror the tree to avoid redundant calculations.

Multiple summations over ancestral-state configurations 
    at internal nodes are moved as far to the right as 
    possible.



where�i = {A, C, G, T}	 

(Anc)

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

Evaluating the likelihood of a site involves the  
    recursive calculation of conditional likelihoods  
    from the tips of the tree to the root.

The conditional likelihoods,    , are the probabilities of the  
    observations above point i in the tree, conditional on  
    state i at that node.



(Anc)

These conditional likelihoods are the likelihoods of 
    observing i at or above the end of each of the branch...

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



(Anc)

if the branch is not a tip, the    of each possible state has 
previously been evaluated in a prior step.

(Anc)

i

if the branch is a tip, the    of the observed state is 1, 
otherwise it is 0 (e.g., depicted for states A and C in L and R).

i

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

These conditional likelihoods are either known (if tip) 
    or have already been computed (in a previous step).



(Anc)

Let’s first focus on the left descendant branch.

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

So, how do we calculate the conditional likelihoods?



(Anc)

for each possible 
end state sum…
…the product of the 
transition probabilities 
of changes from i to j  
over branch L… …and the conditional 

likelihood of each end 
state, j.

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

So, how do we calculate the conditional likelihoods?



(Anc)

Recall that the transition probabilities, P (v ), of histories ending 
    in state j that were initiated from state i and run over branch 
    L are either approximated (by Monte Carlo simulation) or  
    solved by exponentiating the product of the instantaneous- 
    rate matrix, Q, and branch length, v  .

ij

(Anc)

L

L

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

So, how do we calculate the conditional likelihoods?

Q = qij =

0

BB@

� µa⇡C µb⇡G µc⇡T

µa⇡A � µd⇡G µe⇡T

µb⇡A µd⇡C � µf⇡T

µc⇡A µe⇡C µf⇡G �

1

CCA



The Felsenstein Pruning Algorithm

(Anc)

The transition probabilities p   (   ) over branch  
are calculated by exponentiating the product of the 
instantaneous rate matrix, Q, and branch length    .

AA vL

vL

vL

(Anc)

A
(L)

A
(Anc)

How Do We Calculate Site Likelihoods?

First, set the start state, i, to i = A  
    and set the end state, j, to j = A

vL



The Felsenstein Pruning Algorithm

(Anc)

(Anc)

G
(L)

A
(Anc)

How Do We Calculate Site Likelihoods?

First, set the start state, i, to i = A  
    and set the end state, j, to j = A  
    next set the end state, j, to j = C 
    then set the end state, j, to j = G…

Then we do the same thing for end state j = G… 

vL



The Felsenstein Pruning Algorithm

(Anc)

(Anc)

T
(L)vL

A
(Anc)

How Do We Calculate Site Likelihoods?

First, set the start state, i, to i = A  
    and set the end state, j, to j = A  
    next set the end state, j, to j = C 
    then set the end state, j, to j = G  
    then set the end state, j, to j = T

Finally, we do the same thing for end state j = T



(Anc)

Then we sum the fractional likelihoods for each of 
the four end states j = {A, C, G, T}...

(Anc)

T
(L)

A
(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?

Next, we sum the fractional likelihoods for each  
    of the four end states j = {A, C, G, T}...

vL



Next, we repeat the process for the right branch,    .

(Anc)

(Anc)

vR

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



Finally, we calculate        as the product of the  
conditional likelihoods of the two descendant branches, 
which makes explicit the assumption that substitutions  
along these two lineages are independent.

A
(Anc)

(Anc)

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



Now we have computed        …

(Anc)

(Anc)

A
(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?
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(Anc)

So, now we need to repeat the entire process 
    for i = C, 
    for i = G, 
    and for i = T.

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



Then we need to repeat the entire process for  
each of the more inclusive nodes toward the root,  
where the conditional likelihoods of the tips are first  
recorded... 

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



Then we need to repeat the entire process for  
each of the more inclusive nodes toward the root,  
where the conditional likelihoods of the tips are first  
recorded... 

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?



Upon reaching the root of the tree, the  
conditional likelihood of each state is  
‘weighted’ by the prior probability (stationary  
frequency) of the corresponding state,    , to  
give the unconditional probability of the data,    . xi

π i

(Anc)

The Felsenstein Pruning Algorithm

How Do We Calculate Site Likelihoods?
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Although this is a convenient assumption, it is not very biologically realistic,  
    but it can be relaxed.

That is, we compute the likelihood for each site in the alignment (one site at a 
    time) and then combine them as the product

Calculating the likelihood of an alignment assumes independent of sites

We generally assume that the substitution process is independent across sites,  
    which allows us to combine their probabilities as the product of the N site likelihoods.

Calculating the Likelihood of an Alignment



where ci is the number of instances of the unique site pattern i.

species I     TCGCACCGGCGTA...
species II    TCGTTCAGGCGTT...
species III   GCGTTCACCGGGG...
species IV    TCGTTCACCCGTT...

Therefore, we can avoid redundant calculations (and increase computational 
    efficiency) by identifying the set of N' unique site patterns.

Compressing the alignment using unique site patterns

Because we assume that sites are independent, sites with the same site pattern 
    (e.g., TTGT� will have the same likelihood

Calculating the Likelihood of an Alignment



Using the log likelihood does not alter the estimates of parameters.

To avoid underflow, we sum the logs of the site likelihoods: 

Because an alignment typically has thousands of sites, the product of  
   these numbers can quickly become too small to be held correctly 
   in computer memory (a problem called 'underflow').

Why do we calculate log likelihoods?

Conditional likelihoods for a given site are real numbers with values < 1.

Calculating the Likelihood of an Alignment
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Pr(B)

=

Pr(A"B)Pr(B)=Pr(A,B)

Pr(B"A)Pr(A)=Pr(A,B) Pr(B"A)Pr(A)

and by the same reasoning:

which is the probability of observing A times the probability of observing B  
    given that A has occurred.

Joint Probability
The probability of observing both A and B, Pr(A,B), is therefore:

Conditional Probability
The probability of observing A given that B has occurred, Pr(A"B), is just the  
     fraction of cases in which B occurs, Pr(B), that A also occurs, Pr(A,B).

Bayesian Inference
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Pr(B)
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and by the same reasoning:

which is the probability of observing A times the probability of observing B  
    given that A has occurred.

Joint Probability
The probability of observing both A and B, Pr(A,B), is therefore:

Conditional Probability Bayes Theorem
The probability of observing A given that B has occurred, Pr(A"B), is just the  
     fraction of cases in which B occurs, Pr(B), that A also occurs, Pr(A,B).

Bayesian Inference



Pr(A"B) =
Pr(B)

Pr(B"A) Pr(A)

Bayes Theorem
The probability of observing A given that B has occurred, Pr(A"B), is just the  
     fraction of cases in which B occurs, Pr(B), that A also occurs, Pr(A,B).

Bayesian Inference



f(✓i | X) =
f(X | ✓i)f(✓i)PN
i=1 f(X | ✓j)f(✓j)

Pr(A"B) =

Bayes Theorem
The probability of observing A given that B has occurred, Pr(A"B), is just the  
     fraction of cases in which B occurs, Pr(B), that A also occurs, Pr(A,B).

Bayesian Inference

observed outcomeunobserved outcome

Pr(B)
Pr(B"A) Pr(A)
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Pr(B)
Pr(B"A) Pr(A)Pr(A"B) =

Bayes Theorem
The probability of observing A given that B has occurred, Pr(A"B), is just the  
     fraction of cases in which B occurs, Pr(B), that A also occurs, Pr(A,B).

Bayesian Inference

posterior probability likelihood function prior probability

marginal likelihood



f(✓i | X) =
f(X | ✓i)f(✓i)R
f(X | ✓)f(✓)

Pr(B)
Pr(B"A) Pr(A)Pr(A"B) =
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Generic statistical paradigm         Coin tossing

pose a substantive question Is this a fair coin? Or, what is the probability 
of observing heads in a single toss? 

develop a stochastic model 
with parameters that, if know, 
would answer the question

collect observations that 
are informative about model 
parameters 

toss the coin n times and record the 
number of heads, x.

find the best estimate of 
model parameters (by some 
means) conditioned on (i.e., 
given) the data at hand 

find the best estimate of the   parameter  
using Bayesian inference

Binomial probability distribution with 
parameter   (probability of observing 
heads)

Bayesian Inference



f(✓ | x) = f(x | ✓)f(✓)
R 1
0 f(x | ✓)f(✓)

��)��������	������

posterior probability

likelihood function

marginal likelihood

prior probability

Example: Coin tossing

Bayesian Inference
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Example: Coin tossing

Bayesian Inference

f(✓ | x) = f(x | ✓)f(✓)
R 1
0 f(x | ✓)f(✓)

likelihood function



heads

We will adopt the Binomial distribution as our model of coin tossing: 
    discrete probability distribution that has two outcomes (e.g., T/F, Y/N, H/T) 

Example: Coin tossing

Bayesian Inference



tails

We will adopt the Binomial distribution as our model of coin tossing: 
    discrete probability distribution that has two outcomes (e.g., T/F, Y/N, H/T) 

Example: Coin tossing

Bayesian Inference



possible orderings  
of x heads in n tosses

We will adopt the Binomial distribution as our model of coin tossing: 
    discrete probability distribution that has two outcomes (e.g., T/F, Y/N, H/T) 

Example: Coin tossing

Bayesian Inference



This is called the Binomial coefficient, and is read  'n choose x':

We will adopt the Binomial distribution as our model of coin tossing: 
    discrete probability distribution that has two outcomes (e.g., T/F, Y/N, H/T) 

Example: Coin tossing

Bayesian Inference

possible orderings  
of x heads in n tosses



With some algebra, we can solve for   to find the MLE:

The likelihood function for the Binomial distribution:

We will adopt the Binomial distribution as our model of coin tossing: 
    discrete probability distribution that has two outcomes (e.g., T/F, Y/N, H/T) 

Example: Coin tossing

Bayesian Inference
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Example: Coin tossing

Bayesian Inference

f(✓ | x) = f(x | ✓)f(✓)
R 1
0 f(x | ✓)f(✓)

prior probability
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€ 

f (θ) !

€ 

θ !

NOTE:�uniform prior ≠ uninformative

The Beta prior probability distribution:

uniform prior:�alpha = beta = 1

Example: Coin tossing

Bayesian Inference
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uniform prior:�alpha = beta = 4

€ 

f (θ) !

€ 

θ !
non

The Beta prior probability distribution:

Example: Coin tossing

Bayesian Inference
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€ 

f (θ) !

€ 

θ !
uniform prior:�alpha = beta = 0.5non

The Beta prior probability distribution:

Example: Coin tossing

Bayesian Inference



The impact of the prior probability distribution on the estimated posterior probability:

x = 8 heads in n = 10 tosses

€ 

f (θ) !

€ 

θ !

Example: Coin tossing

Bayesian Inference

posterior

likelihood

prior



€ 

θ !

The impact of the prior decreases as the number of observations increases.

€ 

f (θ) !

The impact of the prior probability distribution on the estimated posterior probability:

Example: Coin tossing

Bayesian Inference

x = 80 heads in n = 100 tosses

posterior

likelihood

prior



Outline

What, exactly, is likelihood anyway?

II. Calculating the likelihood of the data
How to calculate the likelihood of a single site:

• Using Monte Carlo simulation
• Using brute force
• Using the Felsenstein pruning algorithm

How to calculate the likelihood of an entire alignment:

III. Introduction to Bayesian inference
Becoming fascinated with posteriors:

• Deriving Bayes theorem
• A non-phylogenetic example
• Bayesian inference of phylogeny

I. A brief introduction to the likelihood function

IV. Numerical algorithms for Bayesian inference
Markov-chain Monte Carlo (MCMC)



A G

C T

1. Tree

II. Phylogenetic model parameters
topology

€ 

τ = τ1,τ2,...,τ(2s−5)!!( ) !
branch lengths

€ 

ν = ν1,ν2,...,ν(2S−3)( ) !

relative substitution rates

€ 

θ = θAC ,θAG ,θAT ,θCG,θCT ,θGT( )!
2. Model of character change

€ 

Φ = θ,π,α,T( ) !

stationary frequencies

€ 

π = π A ,πC ,πG,πT( )!

III. Phylogenetic likelihood function

IV. Priors on parameters
~Uniform
~Dirichlet (1,...,1)

~Dirichlet (1,1,1,1)

V. Posterior Probability

~Dirichlet (1,1,1,1,1,1)

posterior probability
f(Parameter | Data) =

f(Data | Parameter)f(Parameter)

f(Data)

likelihood function prior probability

marginal likelihood

f(⌧, ⌫,� | X) =
f(X | ⌧, ⌫,�)f(⌧, ⌫,�)

f(X)

Bayesian Inference of Phylogeny (on one slide)

Assume an alignment, X, of N sites for S species:

I. Data
X = (x1, x2, x3, . . . , xN )


