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Outline & Organization

l. Brief overview of general approach to the study of lineage diversification

Il. Brief overview of popular methods for studying lineage diversification
A beginners guide to the types of methods available

lll. How to apply popular methods for studying lineage diversification
Using R packages to address various questions about diversification rates
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l. Brief overview of general approach to statistical study of lineage diversification

Il. Brief overview of popular methods for studying lineage diversification
A beginners guide to the types of methods available

lll. How to apply popular methods for studying lineage diversification
Using R packages to address various questions about diversification rates



Statistical Phylogenetic Approaches for
the Study of Diversification Rates

l. Pose a substantive question
ll. Develop a stochastic model with parameters that, if known, would answer the question

lll. Collect observations that are informative about model parameters



Statistical Phylogenetic Approaches for
the Study of Diversification Rates

l. Pose a substantive question
ll. Develop a stochastic model with parameters that, if known, would answer the question
lll. Collect observations that are informative about model parameters

IV. Estimate the model parameters using some method conditioned on the data at hand



The Five Fundamental Questions in the Study
of Lineage Diversification Rates

1. Estimating parameters of the stochastic branching-process model

What are the absolute/relative rates of the branching process?
- speciation rate, A
* extinction rate, W
- diversification rate, 0 = (A — W)
- relative extinction rate, € = (UL /A)



The Five Fundamental Questions in the Study
of Lineage Diversification Rates

1. Estimating parameters of the stochastic branching-process model

2. Identifying significant diversification rate shifts through time

Have tree-wide rates of diversification changed through time?
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The Five Fundamental Questions in the Study
of Lineage Diversification Rates

1. Estimating parameters of the stochastic branching-process model
2. Identifying significant diversification rate shifts through time

3. Locating significant diversification rate shifts along branches

Along which branches have significant rate shifts occurred?
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The Five Fundamental Questions in the Study
of Lineage Diversification Rates

1. Estimating parameters of the stochastic branching-process model
2. Identifying significant diversification rate shifts through time
3. Locating significant diversification rate shifts along branches

4. Evaluating correlates of differential diversification rates

Are diversification rates correlated with other evolutionary variables?
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The Five Fundamental Questions in the Study
of Lineage Diversification Rates

1. Estimating parameters of the stochastic branching-process model
2. Identifying significant diversification rate shifts through time

3. Locating significant diversification rate shifts along branches

4. Evaluating correlates of differential diversification rates

5. Detecting significant diversification rate variation across the tree
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Statistical Phylogenetic Approaches for
the Study of Diversification Rates

l. Pose a substantive question
l. Develop a stochastic model with parameters that, if known, would answer the question
lll. Collect observations that are informative about model parameters

IV. Estimate the model parameters using some method conditioned on the data at hand



Stochastic-Branching Process Models

“All models are wrong, but some are useful” Box (1976)

Common Stochastic-Branching Process (SBP) Models

Generalized Birth-Death (GBD: Kendall, 1948)
® M¢)and W(2), A> U

Constant Birth-Death (CBD: Kendall, 1948)
® Aand W, A> U

Sampled Birth-Death (SBD: Gernhardt, 2008)
< }\'9 I'L s pa }\‘ > u

Generalized Pure Birth (GPB: Harris, 1964)
e M2), L =0

Constant Pure Birth (CPB: Yule, 1924)
A, L=0



Stochastic-Branching Process Models

“All models are wrong, but some are useful” Box (1976)

General properties of SBP Markov models
Assume A(¢) and/or L (¢) are:
* constant across all lineages at and instant
* independent across lineages at and instant

* events occur instantaneously

Assume p is:

* uniform/random with respect to phylogeny



Statistical Phylogenetic Approaches for
the Study of Diversification Rates

l. Pose a substantive question
ll. Develop a stochastic model with parameters that, if known, would answer the question
lll. Collect observations that are informative about model parameters

IV. Estimate the model parameters using some method conditioned on the data at hand



What Are the Basic Phylogenetic Data for
Studying Diversification Rates?

Topological Information Temporal Information

Distribution of species diversity across the tree Distribution of speciation events through time



What Are the Basic Phylogenetic Data for
Studying Diversification Rates?

Topological Information Temporal Information

The primary phylogenetic ‘observations’—both the topological distribution of species
diversity and the temporal distribution of waiting times—arise via stochastic processes

These ‘observations’ are estimates from data (and therefore associated with uncertainty)



Statistical Phylogenetic Approaches for
the Study of Diversification Rates

l. Pose a substantive question
ll. Develop a stochastic model with parameters that, if known, would answer the question
lll. Collect observations that are informative about model parameters

IV. Estimate the model parameters using some method conditioned on the data at hand



Statistical Inference Under Stochastic-Branching
Process Models

SBP models are employed in two qualitatively different ways

* Null-modeling approaches calculate a summary statistic from the phylogenetic
‘observations’, which is then compared to a statistical distribution generated
under an appropriate stochastic-branching process model

* Model-fitting approaches estimate parameters of the SBP models from the
phylogenetic ‘observations’; i.e., the topological distribution of species diversity
and the temporal distribution of waiting times



Statistical Inference Under Stochastic-Branching
Process Models

Inference under SBP models may adopt different statistical approaches

* Maximum Likelihood Estimation methods involve numerical optimization
algorithms to identify the joint parameter estimates that collectively maximize
the likelihood of the phylogenetic ‘observations’ under the SBP model

° Quasi-Bayesian Inference methods involve averaging ML estimates over a
marginal posterior probability density of the phylogenetic ‘observations’

* Empirical Bayesian Inference methods involve numerical algorithms to
approximate the joint posterior probability density of the SBP model parameters
given point (maximum-likelihood) estimates of the phylogenetic ‘observations’

e Sequential-Bayesian Inference methods involve Bayesian inference of the SBP
model parameters averaged over a previously estimated marginal posterior
probability density of the phylogenetic ‘observations’

* Hierarchical-Bayesian Inference methods involve joint (simultaneous) estimation
of the SBP and other phylogenetic model parameters



Why Pursue These Questions in a Bayesian
Statistical Framework?

Recent developments have largely been developed in Quasi-Bayesian ML framework

The study of diversification entails several sources of uncertainty

* phylogeny/topology

* branch lengths/durations
* rate parameters

* event histories

Bayesian framework provides a means for accommodating uncertainty



Outline & Organization

l. Brief overview of general approach to statistical study of lineage diversification

l. Pose a substantive question

ll. Develop a stochastic model with parameters that can answer the question
lll. Collect observations that are informative about model parameters

IV. Estimate the model parameters using some method conditioned on the data

ll. Brief overview of popular methods for studying lineage diversification
A beginners guide to the types of methods available
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l. Brief overview of general approach to statistical study of lineage diversification

Il. Brief overview of popular methods for studying lineage diversification
A beginners guide to the types of methods available



Five Fundamental Questions in the Study of
Diversification Rates

l. Estimating parameters of the branching process

Il. Identifying significant diversification rate shifts through time
lil. Locating significant diversification rate shifts along branches
IV. Evaluating correlates of differential diversification rates

V. Detecting significant diversification rate variation across the tree



Estimating Diversification-Rate Parameters

Lineage-Thru-Time Plots
(e.g., Nee et al., 1992, 1994q,b)

Semi-logarithmic accumulation of lineages

Primarily descriptive, characterized by:

* Push of the Past
» slope = diversification rate, 9 = (A - 1)

If extinction rate, =0, also characterized by:

* Pull of the Present
* increased offset slope
* asymptotic behavior under random sub sampling

number of lineages

1000 1
100 1

10 7




Estimating Diversification-Rate Parameters

ML Estimation from Lineage-Thru-Time Plots
(e.g., Nee , 2001, Magallon & Sanderson, 2001) 0.7

Maximum likelihood is used to estimate composite
rate parameters:
- diversification rate, r= (A - 1)
- relative extinction rate, € = (L /M) =

It is not possible to estimate individual rate parameters
(e.g., Kubo & lwasa, 1995; Paradis, 2004)

Comparing absolute diversification rates across
clades of different ages is largely invalid if p >0

(e.g., Kubo & Iwasa) d/b

Reliable (valid) parameter estimation

* accommodating variance in divergence-time estimates
* no bias in divergence time estimates
* large phylogenies
* complete or phylogenetically unbiased species sampling
* demonstration that diversification has been constant
* across lineages
* through time



Estimating Diversification-Rate Parameters

Practical Demonstration 1



Estimating Diversification-Rate Parameters

Extinction rates can be estimated from
molecular phylogenies
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Estimating Diversification-Rate Parameters

Extinction rates can be estimated from

molecular phylogenies
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Figure 3 clearly illustrates that, in general, different pairs
of branching rates and extinction rates can give exactly the
same pattern of ancestral phylogeny, expressed in terms of
the number of ancestral lineages over various times. We have
shown the equivalence relationship between the case with a
time-dependent branching rate and a constant extinction rate
and the second case with a constant branching rate and a
time-dependent extinction rate. Generating the same ancestral
phylogeny does not mean that these two processes are equiv-
alent in evolution, because temporal change in the actual
number of taxa, denoted by S(7), may greatly differ between
these processes. This shows a clear limitation of the method
of inferring past events from detailed knowledge, such as of
molecular phylogenies, of the extant species only.



Five Fundamental Questions in the Study of
Diversification Rates

l. Estimating parameters of the branching process

Il. Identifying significant diversification rate shifts through time
lil. Locating significant diversification rate shifts along branches
IV. Evaluating correlates of differential diversification rates

V. Detecting significant diversification rate variation across the tree



Locating Shifts in Diversification Rate
Through Time

Gamma Statistic (APE)

Under a Yule process, waiting times between speciation
events are i.i.d. exponentially distributed random variables

If the process is constant, the sum of the waiting times will
be a gamma distributed random variable

* the shape of the gamma is the speciation rate

* the scale of the gamma is (2N-2) ®

The gamma statistic exploits the Yule process, where the |
waiting times are maximally concentrated near the root ; ®

] n—1 ? T
(e () - (3) ey
=2 \ =2 Y ;
7= 1 ’T:<ngf)-i |
T J=2 L& L & | 84 | 85 | 86!
\/12(72 —2)

Any tree with a greater concentration of waiting times near
the root must be rate variable (with decreasing rate)

(Pybus & Harvey, 2001)



Locating Shifts in Diversification Rate

Through Time

Gamma Statistic (APE)

Incomplete species sampling can also create the illusion of
temporally decreasing diversification rate

Accordingly, Monte Carlo simulation is required to generate
a null distribution of theY-statistic for incomplete trees

* assumes random species sampling
* departures from random sampling inflate FPR

Can detect diversification rate decreases, but not increases

Does not estimate parameters of the process:
A, U, or the location of the temporal rate shift

(Pybus & Harvey, 2001)




Locating Shifts in Diversification Rate
Through Time

Birth-Death Likelihood Method (LASER)

Concept

Fits various stochastic-branching process models to (parts of) the tree
Selects among diversification models using AIC

Data
Vector of waiting times, x
Models
constant Yule Yule-shift
a()\,,u:()) a'()\17)\27/~L:07ts)
constant birth-death variable birth-death
a()‘aluzoa)‘>:u) a()\1,>\2>0;u1,,u22();61=e2)

(Rabosky, 2006)



Locating Shifts in Diversification Rate
Through Time

Birth-Death Likelihood Method (LASER)

Likelihood function

Where r =\ — pu;e = A/

(Rabosky, 2006)



Locating Shifts in Diversification Rate
Through Time

Birth-Death Likelihood Method (LASER)

Model selection
Diversification models are compared using the AIC model selection criterion:

AIC =2p —2log L

! !

number of parameters maximum likelihood

The fit of the data to the best rate variable and rate constant models is calculated:

AAICrc = AICRc — AICRy

The significance of the A AIC test statistic is assessed by Monte Carlo simulation under
the null (Yule) stochastic-branching process model

(Rabosky, 2006)



Locating Shifts in Diversification Rate
Through Time

Practical Demonstration 2



Locating Shifts in Diversification Rate
Through Time

Methodological Concerns

50
]

Effects of branch-length estimation biases Original data

Pruned randomly to 80%
Pruned randomly to 60%
Pruned randomly to 40%
Deep nodes sampled 80%

* substitution-rate profile may lead to systematic
estimation bias of deeper/shallower nodes
(e.g., Revell et al., 2005)

Deep nodes sampled 60%
Deep nodes sampled 40%

EECOOCEN

20
!

Departure from random species sampling

* more realistic taxon sampling may produce
spurious decrease in rate
(e.g., Cusimano & Renner, 2010)

10
|

log(N)

Effects of among-lineage rate variation

* violation of stochastically constant rates across o
lineages may produce spurious rate decreases

Effects of model-selection bias

* reliance on AIC may lead to inflated rejection of
simpler rate constant models

Effects of phylogenetic uncertainty
* reliance on point estimates of phylogeny and =]

g o 1 1 T T T T T T
divergence times may render inferences unreliable R R A Y P A X

Time in My



Locating Shifts in Diversification Rate
Through Time

(Unsolicited) Methodological Advice

TreePar (Stadler, 2011)
Maximum-likelihood estimation of temporal shifts in diversification rate

* . TESS (Hohna, 2013)

Bayesian inference of temporal shifts in diversification rate



Five Fundamental Questions in the Study of
Diversification Rates

l. Estimating parameters of the branching process

Il. Identifying significant diversification rate shifts through time
lll. Locating significant diversification rate shifts along branches
IV. Evaluating correlates of differential diversification rates

V. Detecting significant diversification rate variation across the tree



Locating Shifts in Diversification Rate
Along Branches

MEDUSA: Sequential AIC Model Fitting

Concept

Fits increasingly complex birth-death models to (parts of) the tree
Selects among diversification models using stepwise AIC

Data

A dated phylogenetic tree I, with s terminal lineages
Terminal lineage 7 represents 71; species.

(Alfaro et al., 2009)



Locating Shifts in Diversification Rate
Along Branches

MEDUSA: Sequential AIC Model Fitting

Likelihood function

Under constant diversification rates, the probability of observing a branch of length 7
that began at time ¢, conditional on the survival of its descendants is:

P(r | A ) = —SRLTT)

1 — eexp(—rt)

and the probability of observing a subclade of stem age ¢ with 1 descendants
(conditional on n > 0) is:

P(n | t, A p) = (1 —u) x (u)",
exp(rt) — 1

- exp(rt) — €

(Alfaro et al., 2009)



Locating Shifts in Diversification Rate
Along Branches

MEDUSA: Sequential AIC Model Fitting

Likelihood function

To calculate the likelihood of the whole tree, we calculate the likelihood for each
branch and each terminal unresolved subclade combine them as their product:

P(T,n |\, p) < 1] Pmtz,xu)>

branches

< 11 P(”i\%%ﬂ))

triangles

(Rabosky et al., 2007)



Locating Shifts in Diversification Rate
Along Branches

MEDUSA: Sequential AIC Model Fitting

Likelihood function

Purportedly, this is valid even when diversification rates vary over branches and/or
terminal unresolved subclades:

P(T,n | A, p) ( 11 PTzltz,Az,Mz)>

branches

( Il Pl tia)\z’aﬂi)>

triangles

(Rabosky et al., 2007)



Locating Shifts in Diversification Rate
Along Branches

MEDUSA: Sequential AIC Model Fitting

Model selection
Diversification models are compared using the AIC model selection criterion:

AIC =2p —2log L

! 1

number of parameters maximum likelihood

The critical AAIC for choosing among models is arbitrary

(Akaike, 1974)



Locating Shifts in Diversification Rate
Along Branches
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MEDUSA: Sequential AIC Model Fitting
Algorithm

w
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(Alfaro et al., 2009)



Locating Shifts in Diversification Rate
Along Branches

[\
~

MEDUSA: Sequential AIC Model Fitting
Algorithm

w
=

|) Fit a one-rate model to the data.

2) Fit “every” two-rate model to the data.

3) Fit “every” three-rate model that contains the
best two-rate model.

~—

4) Keep fitting increasingly complex models.

5) Compute the AIC score for the best model in

each level of model complexity.

6) Starting with the one-rate model, accept the
next-most-complex model if the improvement

—_
~—

in model fit is “good enough.”

i
s A

s

~[1d 1N
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|
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(Alfaro et al., 2009)



Locating Shifts in Diversification Rate
Along Branches

Practical Demonstration 3



Five Fundamental Questions in the Study of
Diversification Rates

l. Estimating parameters of the branching process

Il. Identifying significant diversification rate shifts through time
lil. Locating significant diversification rate shifts along branches
IV. Evaluating correlates of differential diversification rates

V. Detecting significant diversification rate variation across the tree



Evaluating Correlates of Differential
Diversification Rates

Two fundamentally different types of questions:

Is there a general correlation between trait state and diversification rate?
e.g., Are nectar spurs correlated with increase rates of diversification?

Is there a correlation between a specific event and and diversification rate?
e.g., Was a particular origin of nectar spurs in columbines correlated with increase
rates of diversification?



Evaluating Correlates of Differential
Diversification Rates

Recent advances for evaluating diversification-rate correlates
*SSE model; DiversiTree (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010...)
CVPPD; tRate (Moore & Donoghue, 2009)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Motivation: Imagine that we see a preponderance of species with a given state

Growth Form @ woody @ herbaceous
000000000000000000000000000000000000000000000000000000000000000

i

Explanations include:

increased woody speciation rate )\.
decreased woody extinction rate [ o
decreased herb speciation rate )\.
increased herb extinction rate e

biassed exchangeability rate Jeo

Maddison (Evolution, 2006)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Solution: Specify a model that includes the parameters to tease these scenarios apart

Ao
000000 O
LY T A
Mo
I M1
qo1
q10

Solve numerically with PDEs:

Dno(t + dt) = (1 — podt)[(1 — qo10t)(1 — Aodt) Dno(t) + (g010t)(1 — Agdt) D (¢)
+(1 - QO15t) (Aodt)Eo(t)DNo(t) + (1 - qO15t)()\05t)E0(t)DNO(t)] + (,LL()(St)O

DNl (t e 5t) = (1 - ulét)[(l - qlo(St)(l - )\15t)DN1(t) + (Q105t)(1 - Al(st)DNo(t)
+(1 — q100t) (MOt E1 (1) D1 (£) + (1 — q1o6t)(M6t) By () Dava (£)] + (121 6t)0

Maddison et al. (Syst Biol, 2007)

speciation rate for state 0
speciation rate for state 1
extinction rate for state 0
extinction rate for state 1

rate of change to state 1

rate of change to state 0



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Solution: Specify a model that includes the parameters to tease these scenarios apart

Ao
000000 O
LY T A
Mo
I M1
qo1
q10

Solve numerically with PDEs:

speciation rate for state 0
speciation rate for state 1
extinction rate for state 0
extinction rate for state 1

rate of change to state 1

rate of change to state 0

Eo(t + dt) = podt + (1 — podt)(1 — go10t)(1 — Aodt) Eo(t) + (1 — p00t)

(qu 5t) (1 - )\05t)E1

() + (1 — podt)(1 — qo16t)(Aodt) Eo(t)?

E1 (t 5 5t) — ,LLl(St . (1 - ,ulét)(l - q105t)(1 - )\15t)E1 (t) - (1 - /,61525)

(q100t)(1 — Aq0t) Eo

Maddison et al. (Syst Biol, 2007)

(t) -+ (1 - ﬂlét)(l - q105t)()\15t)E1 (t)2



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no speciation no speciation speciation & extinction speciation & extinction
t-l-(St! t—l—5t!1 t+5t! t—|—5t!
PDEs for branch probabilities: Dno(t + 6t)

(1 — poot no extinction in the interval
[(1 - QOldt)(l - Aoét)DNO t

)
(2)
+(qo10t)(1 — Agdt)Dpn1(t)  state change, no speciation
(2)
)

no state change, no speciation

no state change, speciation & extinction

—|—(1 - qO15t)()\05t)Eo( )DNO

‘|‘(1 - quét)()\oét)Eo( )DN()( )
+(pdt)0  if extinct, zero probability of being observed

no state change, speciation & extinction

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since 7 extinction since f of both since ¢
T T
t=0 t40 t+1 T t40
t—|—5t|0 t—l—(StVO t+ot+0 t+ot+0
PDEs for branch probabilities: Eo(t+ 6t) =

oot  extinction in the interval
+(1 — podt)(1 — qo10t)(1 — Agdt)Ep(t) no state change, no speciation
+(1 — podt)(qo1t)(1 — A\gdt)E1(t) state change, no speciation
+(1 = podt) (1 — go16t)(Modt) Eg (t)2 no state change, speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

We start at the tips of the tree and move root-ward in small increments...

N

t
t+ ot

0
0

If N is a tip species with state 1:

Dpno(tg) =0
Dn1(tg) =1

If N is a tip species with state O:
Dpno(tg) =1
Dpn1(tg) =0

Maddison et al. (Syst Biol, 2007)

N

t+ot1+1



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

solving coupled differential equations to obtain conditional branch probabilities...

N N

0 t 11
0 t+ot+1

t
t+ ot

We take the derivative of the PDEs to shrink Ot:

dD

dévo = — (Ao + o + qo1)Dno(t) + go1 Dn1(t) + 200 Ep(t) Dno(t)
dD

dé“ = —(A1 + p1 + q1o) D1 (t) + qroDno(t) + 2A1 B4 (t) D1 (t)

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

and then combine branch probabilities at internal nodes...

N M

o

D ao(ta) = Dno(ta)Daro(ta)Xo

Dai(ta) = Dyi(ta)Dari(ta)

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

and at the root scale the conditional probabilities by the stationary frequencies

L R

o

Dy = Dro(tr)mo

D1 = Dpri(tr)m

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

Davis et al. BMC Evolutionary Biology 2013, 13:38 ~
http://www.biomedcentral.com/1471-2148/13/38 BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Exploring power and parameter estimation of the
BiSSE method for analyzing species diversification

Matthew P Davis', Peter E Midford” and Wayne Maddison’

Davis et al. (BMC Biology, 2013)



Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

Set a: )\. ;é)\.
TR
Jeo =(oe

Set b: )\. = A.
TR
Jeo +({ce

Set c: )\. :)\.
Mo ;é:uo
Jeo =(oe

***Assuming no phylogenetic uncertainty

Davis et al. (BMC Biology, 2013)

a Speciation kK
sr 50 taxa

L J
100 taxa / T — g = ®,
300 taxa
B0 _a- 500 taxa o

o '
/ N

30F

15

ob

1.25x 1.5x 2x 3x 4x 5x 10x 20x
(3:1) (510 (1071) (20:1) (30:1) (40:1) (90:1) (180:1)

b character Change
70r

1T\

4a0r L

1/ AN

0F

0

2% 3x 4x Sx 10x X 40x
(2,:1) (3:1) (@4:1) (5:1)  (10:1)  (20:1)  (40.:1)

C Extinction
0

25

20

I

Power (%)

o

sk
0

2x 3x 4x 5x 10x
(3:1) (6,:1,) 9,:1.) (12,:1,) (27,:1,)
Difference in Rates (Character State Tip Ratios)

Fiaure 1 Power of BiSSE under simulations with asvmmetrical




Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

[ a Speciation

Conclusion N
The power of the BiSSE likelihood method to test hy- - \
potheses of rate asymmetry is susceptible to both tree '
size and variation in parameter rates. Overall, power of —
the BiSSE method is low if the tree size is below 300 ™" ™"
taxa, and investigators should take special care to inves-
tigate the power of their results if applying the BiSSE
method to topologies with fewer than 300 tips. Power is
increased when estimating fewer parameters, so utilizing \
a four parameter model to test hypotheses may be pre- ~.
ferable if appropriate. %OT
This study indicates that contrary to the hope
expressed in Maddison [20], the problem of con-
founding effects can still occur while estimating
process parameters simultaneously if there is low \

sample size and/or high tip ratio bias. Under scenar-
 ————

"

.
2x 3x 4x 5x 10x
(3:1) 6.:1,) 9,:1.) (12,:1,) (27,:1,)
Difference in Rates (Character State Tip Ratios)

Fiaure 1 Power of BiSSE under simulations with asvmmetrical

Davis et al. (BMC Biology, 2013)




Evaluating Correlates of Differential
Diversification Rates

Practical Demonstration 4



Evaluating Correlates of Differential
Diversification Rates

And now for some complicated models...meet the *SSE family!

BiSSE  (Binary-State Speciation Extinction): Maddison et al. (Syst Biol, 2007)

® Two states, 6 parameters

MuSSE  (Multi-State Speciation Extinction): Fitzjohn et al. (Syst Biol, 2009)

* (2 —2) 4+ 2N parameters

QuaSSE (Quantitative-State Speciation Extinction): Fitzjohn (Syst Biol, 2010)

® |ots and lots of parameters

GeoSSE (Geographic-State Speciation Extinction): Goldberg et al. (Syst Biol, 2011)

® even more parameters!

BiSSEness (BiSSE-Node Enhanced State Shift): Magnuson-Ford & Otto (Am Nat, 2012)

® two states, 10 parameters



Evaluating Correlates of Differential
Diversification Rates

Recent advances for evaluating diversification-rate correlates
*SSE model; DiversiTree (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010...)
CVPPD; tRate (Moore & Donoghue, 2009)



Cross-Validation Predictive Densities
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Moore & Donoghue (PNAS, 2009)
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Summary: Some General Advice for Exploring
Diversification Rates

1. Expectations under SBP models are diffuse to a degree that defies intuition
this makes it difficult to detect departures from stochastic expectations

2. When using methods that entail SBP models for estimation it’s critical to:
carefully assess model fit/adequacy
carefully assess our ability to reliably estimate under the assumed model

3. It’s important to accommodate various sources of phylogenetic uncertainty
inferences based on point estimates are unlikely to be reliable

4. The statistical behavior of many recent methods is poorly characterized

power analyses may be useful for assessing the ability of methods to
make the desired inferences from your data

5. Make an effort to understand—-and assess—the (implicit) assumptions

the assumptions are often cryptic, critical and frequently violated in real
data



Five Fundamental Questions in the Study of
Diversification Rates

l. Estimating parameters of the branching process

Il. Identifying significant diversification rate shifts through time
lil. Locating significant diversification rate shifts along branches
IV. Evaluating correlates of differential diversification rates

V. Detecting significant diversification rate variation across the tree



Detecting Diversification Rate Variation
Across Branches

Whole-Tree Model-Based Methods
(Chan & Moore, 2002; Moore, Chan & Donoghue, 2004) N

Topological approach !/ 7

Combines individual ERM nodal probabilities over
infernal nodes as the product, M] [, sum, M>, which

may be weighted by the sample size of each node, M*[],
sum, M*>

Significance estimated by Monte Carlo simulation of the null
distribution of the test statistic under an ERM stochastic
branching process

Power: HIGH
+ statistically robust (accommodates phylogenetic

uncertainty, polytomies) 2 ln(ni) ln(P,.) Z ln(ni ) i

+ can accommodate incomplete taxon sampling 1 > _ =l
+ incorporates more of the tree
- does not identify anomalously large/small groups Eln(nl.)



