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Some	  of	  the	  big	  puzzles	  

Where	  did	  ancestral	  species	  live?	  
	  
How	  does	  range	  size	  affect	  specia@on/ex@nc@on?	  
	  
What	  species	  traits	  help/harm	  coloniza@on?	  
	  
How	  does	  geography	  affect	  range?	  



Biodiversity	  
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FIGURE 1. Ancestral ranges and the timing of diversification in guenons. Only a single representative for each taxon is shown, for the full
tree see Figure 2 and Supplementary Figure S3. Pie charts at the nodes indicate ancestral areas, with color corresponding to the location of these
areas on the map of Africa shown in the upper left corner. The relative proportion of each color represents the fraction of the global likelihood
for the given geographic area. Gray bars indicate the timing of 4 main speciation events (see “Results” section). Vertical bars next to the species
names refer to the species groups with photographs showing one of the species group’ members (Mi: C. mitis group, C: C. cephus group, P: C.
preussi group, Mo: C. mona group, N: C. neglectus group, Di: C. diana group, A: C. aethiops group, D: C. dryas groups, and H: C. hamlyni group).
Tip labels in red highlight the members of the terrestrial clade, also see legend of Figure 2. Myr=million years. Ancestral ranges: A, Congo
basin; B, northern DRC; C, northern Rift Valley; D, Upper Guinea; G, Lower Guinea; I, Angola; J, southeastern DRC; K, southeastern Africa; L,
northeastern Africa; M, Zambia; N, Ethiopia/Sudan. Photograph of C. m. albogularis by Y.A. de Jong and T.M. Butynski—wildsolutions.nl.

a time period marked by major climatic changes in
tropical Africa (Bonnefille 2010). It is thus possible that
repeated geographic isolation, leading to reduced gene
flow between populations, resulted in the diversity of
taxa seen today (i.e., allopatric speciation). Guenons are
well known for their morphological (Fig. 1) and acoustic
diversity (Kingdon 1980, 1988; Gautier 1988)—traits that

can be subject to mate choice. The evolution of these
characteristics together with differences in behavior
is hypothesized to contribute to species recognition.
Furthermore, guenons exhibit a great cytogenetic
diversity, with diploid chromosome numbers ranging
from 48 to 72 (Dutrillaux et al. 1988; Moulin et al.
2008), which may convey reproductive isolation. Finally,
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Cercopithecidae	  
(Primates)	  

Guschanski	  et	  al.,	  2013	  (Syst	  Biol)	  



Epidemiology	  

H5N1	  
(Avian	  Flu)	  

Hemagglu@n	  (HA)	   Neuraminidase	  (NA)	  

Lemey	  et	  al.,	  2008	  (PLoS	  Comp	  Biol)	  
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Supplemental Figure 1
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Upham	  &	  PaVerson,	  2012	  (Mol	  Phylo	  Evol)	  

Data	  matrix	  Time-‐calibrated	  
phylogeny	  

Character	  states	  

Ancestral	  state	  
reconstruc@ons	  

Photo,	  José	  Cañas	  
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Species	  occurrence	  data	  
(gbif.org,	  2013)	  
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Individual	  or	  range	  

The	  individuals	  in	  a	  taxon	  share	  a	  range.	  
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Data	  matrix	  

	   	   	   	  taxon	  i,	  character	  j	  
	  
Con,nuous	  

	  e.g.	   	  la@tude-‐longitude	  
	  
	  
Discrete	  

	  e.g.	   	  single	  area	   	   	   	   	  presence-‐absence	  (range)	  

	  
	  
	  
	  

Xij

Xi = (�,�) = (38.54�N, 121.75�W)

Xi = (0, 0, 1, 0, 0, 1, 1, 1)Xi = Africa



Models	  

Con,nuous	  
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Island	  Model	  

Dispersal-‐only	  model	  
One	  area	  per	  taxon	  (endemic/individual)	  
Learn	  favored	  dispersal	  routes	  
	  
Work	  by:	  

Sanmarin	  et	  al.,	  2008	  (Syst	  Biol)	  
Lemey	  et	  al.,	  2009	  (PLoS	  Comp	  Biol)	  

	  
	  
	  



Island	  Model	  

ian plant genus Psychotria. They divided the archipelago into

four island-groups and used a GTR-like dispersal model to

estimate maximum-likelihood probabilities of ancestral island

distributions on the phylogeny. To our knowledge, however,

the current study represents the first time such models are used

in a classical historical biogeography context, where dispersal

processes are estimated across a large number of groups

evolving on different phylogenies.

Calculating dispersal rates across groups

When the same stochastic dispersal model is applied across

different groups of organisms, as in our approach, the problem

of scaling dispersal rates arises. First, because the molecular

characters of each group evolve at their own rate, the branch

lengths, which are expressed in terms of the expected number

of substitutions per site, need not be comparable across

groups. Second, the evolutionary rate might vary across

lineages within each tree, making it difficult to translate

branch lengths into relative time units. Third, the age of the

studied groups could vary widely. Finally, even if we had

accurately dated trees, the dispersal rates would probably be

different among groups.

To address these problems, we used a simplistic approach.

We enforced a strict molecular clock for all the organismal

phylogenies and introduced a group-specific dispersal rate

scaler (mi), which measured the dispersal rate as the expected

number of dispersals, in a single lineage, from the root to the

tip of the tree. This scaler is the product of the dispersal rate

and the age of the group, and thus accommodates variation

across groups in both of these parameters. The variation in

evolutionary rate across groups was accommodated by a

second group-specific scaler (li) associated with the molecular

clock tree (see below). To obtain absolute rates of dispersal, we

would have needed to calibrate the trees with some internal

calibration point (e.g. fossils and maximum age of islands) but

we did not explore that here.

Setting the analysis

Figure 3 illustrates the model structure of the analysis.

Consider one data set for each group of organisms,

containing a molecular partition (DNA sequences, restriction

sites, protein data, etc.) and a biogeographical partition.

Whereas the molecular partition contains hundreds or

thousands of characters, the biogeographical partition con-

tains only one (island distribution). Although the biogeo-

graphical partition may appear equivalent to a discrete

morphological character, as discussed by Lewis (2001), it is

more comparable to a molecular character in that the state

labels 0, 1, 2, etc., are not arbitrary. This means that we can

generalize stationary state frequencies (carrying capacities)

and exchangeability rates across groups. The substitution

model of the molecular partition is allowed to differ among

groups (GTR1, GTR2, etc., Fig. 3), whereas the biogeograph-

ical model of island evolution is shared across groups (IM,
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Figure 2 Bayesian Island Models: Each circle represents an island; circle size represents the relative carrying capacity of the island
(expected number of lineages at equilibrium); arrow width represents the relative dispersal rate between two single islands. (a) Jukes–Cantor
(JC) model: all carrying capacities equal, all dispersal rates equal. (b) Equal-in model: unequal carrying capacities, equal dispersal rates.
(c) General Time Reversible (GTR) model: unequal carrying capacities, unequal dispersal rates. (d–f) Stepping-stone variant of each model.
(d) JC step: all carrying capacities equal, dispersal rates equal between adjacent islands, zero between non-adjacent islands. (e) Equal-in step:
unequal carrying capacities, all dispersal rates equal between adjacent islands, zero between non-adjacent islands. (f) GTR step: all carrying
capacities unequal, all dispersal rates unequal between adjacent islands, zero between non-adjacent islands.

I. Sanmartı́n, P. van der Mark and F. Ronquist

434 Journal of Biogeography 35, 428–449
ª 2008 The Authors. Journal compilation ª 2008 Blackwell Publishing Ltd
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Fig. 3). In practice, this means that phylogenetic inference is

independent for each group (i.e. each data set is allowed to

evolve on its own topology with its own set of branch

lengths), while biogeographical inference is based on all

groups analysed together.

As described above, we used two tree height scalers for each

group in the analysis. One (the mutation rate li) scales the

clock tree (which has unit height) to produce branch lengths

measured in expected number of substitutions per site, the

other (overall dispersal rate, mi) scales the tree to produce

branch lengths measured in terms of the number of expected

successful colonization events (dispersals). The ratio between

the two scalers, mi/li, is equivalent to the number of expected

dispersals per number of expected substitutions per site. Note

that the two scalers together accommodate variation across

groups in date of first diversification, molecular substitution

rate, as well as relative vagility.

Bayesian estimation of parameters

Bayesian inference is based on calculating the posterior prob-

ability of a hypothesis from the likelihood of the data (i.e. the

probability of observing the data given the hypothesis) and a

prior probability that expresses our previous knowledge about

the hypothesis (the model parameters), using Bayes’ theorem:

f ðh=DÞ ¼ ½f ðD=hÞ % f ðhÞ&=fðDÞ

The denominator, also called model likelihood, is a multi-

dimensional integral and summation of the probability of the

data over all parameters in the model. Typically, it cannot be

estimated analytically so it is estimated using a sampling

technique called Markov Chain Monte Carlo (MCMC).

Basically, we construct a Markov chain that traverses the

universe of our composite (phylogenetic–biogeographical)

model including all possible values for the topology, branch

lengths, and the parameters of the substitution model for each

group of organisms, as well as the parameters of the

biogeographical model (i.e. island carrying capacities and

dispersal rates), which are shared across groups. In each cycle

(generation) of the Markov chain, the values of one or several

parameters are changed to a new state according to some

stochastic proposal mechanism (the Metropolis–Hastings

algorithm). Changes that improve the likelihood of the model

are always accepted; otherwise, they are accepted with a

probability proportional to the ratio of the likelihood of the

new state compared with that of the previous state in the chain

(Holder & Lewis, 2003; Nylander et al., 2004; Pagel et al.,

2004). If the Markov chain is allowed to run long enough, it

reaches a stationary distribution. At stationarity, the Markov

chain samples trees and other model parameters from the

posterior probability distribution of the composite model.

Thus, if stationarity is reached, the MCMC sample of values

should ideally approximate the posterior distribution of the

model. Because the Markov chain samples simultaneously

from the posterior density of trees, and the posterior proba-

bility distribution of the parameters in the molecular and

biogeographical models, we can estimate the joint probability

distribution of the biogeographical parameters and the tree

and molecular substitution parameters. By integrating out the

other parameters (trees and molecular substitution variables),

we can obtain marginal probability distributions for the param-

eters in our biogeographical model. These parameter estimates

are independent from – they accommodate the uncertainty in –

the underlying phylogenies and molecular models.

In this sense, our approach is different from that of Pagel

et al. (2004). They separated the estimation of the phylogeny

from estimation of the model of character evolution by

running first the phylogenetic Markov chain and then using

the MCMC sample of phylogenies to run the character-model

Markov chain. They argue that if the character studied is

highly homoplastic (as distribution probably is), including the

character could distort the estimate of the posterior probability

of trees. The standard Bayesian approach, which is the one we

adopt, instead focuses on the posterior distribution resulting

DNA data  1 

GT R 1 µ 1 m 1 
T 1 

DNA data  2 

GT R 2 µ 2 m 2 
T 2 

DNA data  3 

GT R 3 µ 3 m 3 
T 3 

IM 

Distribution

Figure 3 Schema representing the model structure of a Bayesian
island biogeography analysis, as implemented in MrBayes 4.0.
There is one data set for each group of organisms, containing a
molecular partition (DNA sequences, restriction site, etc.) and a
biogeographical partition (character ‘island distribution’). The
substitution model of the molecular partition is allowed to differ
among groups (GTR1, GTR2, etc.), whereas the biogeographical
model of island evolution (IM) is shared across groups. To
compare dispersal rates across groups, a separate molecular clock
is enforced for each group (T1, T2, etc.). Two group-specific rate
scalers are introduced: a mutation rate scaler (li) that scales the
clock tree to produce branch lengths measured in expected
number of substitutions per site; and a dispersal rate scaler (mi)
that scales the tree to produce branch lengths measured in terms of
the number of expected successful colonization events (dispersal).
The ratio between the two scalers, mi/li, is equivalent to the
number of expected dispersals per number of expected substitu-
tions per site. The two scalers together accommodate variation in
age, evolutionary rate, and relative vagility across groups. Abbre-
viations: IM, island model; mi, overall dispersal rate; li, mutation
rate.

Bayesian island biogeography

Journal of Biogeography 35, 428–449 435
ª 2008 The Authors. Journal compilation ª 2008 Blackwell Publishing Ltd
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Independent:	  
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molecular	  speed,	  
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clock	  tree	  



Bayes	  Factors	  (harmonic	  mean)	  Distribution data were obtained from the original

articles and complemented with the help of online data bases

such as Euro+Med Plantbase (http://www.emplantbase.org/

home.html), Flora Europaea Database (rbg-web2.rbge.org.uk),

Fauna Europaea (http://www.faunaeur.org), the Missouri

Botanical Garden’s VAST database (http://mobot.mobot.org/

W3T/Search/vast.html), etc. Taxon sampling in our data set

(Table 1) agrees well with current estimates of biological

diversity among the three island groups, showing the highest

diversity for the central islands and the lowest for the eastern

islands (Izquierdo et al., 2001). In contrast, non-Canarian

Macaronesian endemics seem to be undersampled in some of

our data sets (see Table 1) and continental relatives are

probably undersampled in all our data sets.

Analysis

All models and Bayesian MCMC sampling algorithms were

implemented in MrBayes 4.0 (the source code and executables

used for this study are available by request from the first

author; the official release of MrBayes 4.0 is expected in the

summer of 2008; see http://www.mrbayes.net for up-to-date

information). We used the GTR substitution model for all

molecular partitions consisting of DNA sequence data, and the

binary Equal-in model for all restriction site partitions. Six

different biogeographical models were tested: JC, JC step

(stepping stone variant), Equal-in, Equal-in step, GTR, and

GTR step. MCMC sampling was run for 20 million genera-

tions in two independent analyses, without Metropolis

coupling, except for the GTR model, where we used four runs

of 30 million generations each. Each analysis was started from

different, randomly chosen topologies, and the results were

compared across runs to verify that the model likelihoods and

samples of model parameters were similar. The chains were

sampled every 100th generation and burn-in was set to

2 million generations in all cases. The software Tracer v. 2.1

(Rambaut & Drummond, 2005) in combination with MrBayes

3.1.2 (Ronquist & Huelsenbeck, 2003) was used to monitor the

behaviour – performance of these analyses – in particular with

regard to mixing, convergence among runs and effective

sample size of parameter estimates (see Appendix S2). Bayes

factors were used for model comparison. Model likelihoods

for calculation of Bayes factors were estimated using the

harmonic mean of the likelihood values sampled from the

stationary phase of the MCMC run (Newton & Raftery, 1994).

RESULTS

The trace plots for the Bayesian MCMC analyses indicated

stationarity and convergence to similar likelihood values

among runs for all models except the JC step model, for

which the likelihood values of one chain appeared to become

fixed for a long period after the chosen burn-in, indicating

slow mixing. Samples of all model parameters were compared

using the Potential Scale Reduction Factor (PSRF), which is

expected to approach 1.0 as independent runs converge. The

PSRF was 1.02 or lower for almost all model parameters except

some GTR rate (exchangeability) parameters for small data sets

or particularly conserved gene regions, where these values were

sometimes difficult to estimate accurately. The exception to

this rule was the JC step model, where the mixing problems in

one chain caused significant heterogeneity between the two

runs. Since the JC step model was clearly not the best for our

data, we did not pursue the problem further by running longer

Markov chains or by pooling the results from more runs.

Tracer plots showed good mixing and large effective sample

sizes (> 300 for each run) for all biogeographical parameter

estimates in the GTR model (Appendix S2).

The negative log of the model likelihoods for the different

island models, estimated using the harmonic mean method,

ranged from –101,704 to –101,618 (Table 3). The JC step

model was the worst, followed by the Equal-in model and the

JC model. The best models were (in order of increasing

likelihood) the Equal-in step model, the GTR model, and the

GTR step model. However, the variance in estimated model

likelihoods between runs was large compared with the

differences between the models, and the values for different

models often overlapped. For instance, of the four runs for the

GTR model, three had estimated model likelihoods between

the two values for the GTR step model – the arithmetic

mean of the model likelihoods was actually higher for the

GTR model (–101364.89) than for the GTR step model

(–101380.92) – while one of the estimated model likelihoods

for the Equal-in step model was better than the worst

estimated value for the GTR model. A longer analysis of

the GTR step model (30 million generations and four inde-

pendent runs as in the GTR model) gave identical results to

the shorter analysis, except that the model likelihood was this

time lower than that of the GTR model (Table 3). Considering

all this, the Bayes factor comparison among models must be

regarded as tentative at best. Possibly, by identifying gaps

with respect to the log likelihoods, one can take them to

indicate that there are three different groups of models: (1) the

Table 3 Bayes Factor comparison of different models of island
evolution. Models have been ordered according to increasing
model likelihood (harmonic mean). A difference larger than five
between two model likelihoods indicates ‘very strong support for
the model with the highest likelihood’ (Kass & Raftery, 1995).

Island model

Ln model

likelihood

JC step )101704.09

Equal-in )101667.87

JC )101649.92

Equal-in step )101628.31

GTR )101624.19

GTR step )101618.94

*()101642.9)

*Model likelihood for the ‘long analysis’ (30 million generations, four

runs); see text.
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Fig. 5. The rules by which dispersal–vicariance analysis reconstructs ancestral distributions. A, Dispersal costs one per area added to a distribution.
B, Extinction costs one per area deleted from a distribution. C, Where speciation occurs by vicariance separating a widespread ancestor into two
mutually exclusive sets of areas, a cost of zero is incurred. D, A species occurring within a single area might speciate within that area, giving rise to two
descendants occupying the same area. This event also has a cost of zero. E, When an ancestral species has a range comprising more than one unit area,
and each of the two descendant species has the same distribution as the ancestor, the cost is equivalent to the number of secondary dispersals needed for
two initially allopatric descendants to come to occupy the same set of unit areas as the ancestor. In this example, a cost of two is incurred. Letters A–D
refer to areas. Dagger, extinction event; dot, species; open arrow, dispersal event.

between areas that are adjacent to one another, and
scaling the rate inversely to distance favors short-range
dispersal over long-range dispersal (Ree & Sanmartı́n,
2009). Separate scaling matrices can be introduced for
discrete time periods, allowing different expectations
for dispersal opportunity through time to be considered.

We note that the DEC model could be extended
in various other ways. For instance, the extinction rate
could be allowed to vary for each area, so that extinction
would be more likely in areas encompassing less favor-
able environments. However, the probabilistic model
used in DEC is intentionally kept simple to reduce the

C© 2009 Institute of Botany, Chinese Academy of Sciences

LAMM & REDELINGS: Review of biogeographic methods 375

Fig. 5. The rules by which dispersal–vicariance analysis reconstructs ancestral distributions. A, Dispersal costs one per area added to a distribution.
B, Extinction costs one per area deleted from a distribution. C, Where speciation occurs by vicariance separating a widespread ancestor into two
mutually exclusive sets of areas, a cost of zero is incurred. D, A species occurring within a single area might speciate within that area, giving rise to two
descendants occupying the same area. This event also has a cost of zero. E, When an ancestral species has a range comprising more than one unit area,
and each of the two descendant species has the same distribution as the ancestor, the cost is equivalent to the number of secondary dispersals needed for
two initially allopatric descendants to come to occupy the same set of unit areas as the ancestor. In this example, a cost of two is incurred. Letters A–D
refer to areas. Dagger, extinction event; dot, species; open arrow, dispersal event.

between areas that are adjacent to one another, and
scaling the rate inversely to distance favors short-range
dispersal over long-range dispersal (Ree & Sanmartı́n,
2009). Separate scaling matrices can be introduced for
discrete time periods, allowing different expectations
for dispersal opportunity through time to be considered.

We note that the DEC model could be extended
in various other ways. For instance, the extinction rate
could be allowed to vary for each area, so that extinction
would be more likely in areas encompassing less favor-
able environments. However, the probabilistic model
used in DEC is intentionally kept simple to reduce the

C© 2009 Institute of Botany, Chinese Academy of Sciences

LAMM & REDELINGS: Review of biogeographic methods 375

Fig. 5. The rules by which dispersal–vicariance analysis reconstructs ancestral distributions. A, Dispersal costs one per area added to a distribution.
B, Extinction costs one per area deleted from a distribution. C, Where speciation occurs by vicariance separating a widespread ancestor into two
mutually exclusive sets of areas, a cost of zero is incurred. D, A species occurring within a single area might speciate within that area, giving rise to two
descendants occupying the same area. This event also has a cost of zero. E, When an ancestral species has a range comprising more than one unit area,
and each of the two descendant species has the same distribution as the ancestor, the cost is equivalent to the number of secondary dispersals needed for
two initially allopatric descendants to come to occupy the same set of unit areas as the ancestor. In this example, a cost of two is incurred. Letters A–D
refer to areas. Dagger, extinction event; dot, species; open arrow, dispersal event.

between areas that are adjacent to one another, and
scaling the rate inversely to distance favors short-range
dispersal over long-range dispersal (Ree & Sanmartı́n,
2009). Separate scaling matrices can be introduced for
discrete time periods, allowing different expectations
for dispersal opportunity through time to be considered.

We note that the DEC model could be extended
in various other ways. For instance, the extinction rate
could be allowed to vary for each area, so that extinction
would be more likely in areas encompassing less favor-
able environments. However, the probabilistic model
used in DEC is intentionally kept simple to reduce the

C© 2009 Institute of Botany, Chinese Academy of Sciences

Ex@rpa@on	  

Dispersal	  

Cladogenesis	  



Dispersal	  &	  Ex@nc@on	  

2301INFERRING GEOGRAPHIC RANGE EVOLUTION

FIG. 1. (A) A hypothetical example of two areas, a1 and a2, that
persist as discrete entities over the duration of interest. The areas
share two connections, each requiring specification of a dispersal
function that describes the relative probability of dispersal success
through time. (B) The probability of success across connection 1
varies through time, but is symmetric with respect to direction (as
might be expected for dispersal across a land bridge exposed by
lowered sea levels), whereas the probability of success across con-
nection 2 is constant through time but favors dispersal from a1 into
a2 (as might be expected for prevailing winds or currents between
adjacent islands).

FIG. 2. Simulating the evolution of geographic range (R) along a lineage. Here there are two areas, a1 and a2, respectively represented
by the left and right halves of the horizontal rectangular boxes. (1) For each area occupied by the lineage at the start time t0 (here R !
{a1}), the time to the next dispersal or extinction event, "t, is randomly generated from a Poisson process. The probability of the event
being dispersal or extinction is determined by their relative rates. The event, here dispersal, occurs in the area with the minimum waiting
time. (2) A dispersal route (connection) is selected at random from those available, and dispersal success is stochastically determined
by the probability function for that connection at that time. In this case, the lineage successfully disperses from a1 into a2, and the latter
area is added to its range (R ! {a1, a2}). If dispersal had failed, the range would have remained unchanged. (3) Event waiting times
are randomly generated for each area in R and a1 has the minimum. (4) Extinction occurs in a1, removing it from R. (5) Waiting times
and events are iteratively generated until the time of the next event exceeds the endpoint of the lineage (t1), or the lineage has gone
extinct in all areas. (6) The range of the lineage at time t1 is recorded as the outcome of the simulation.

(R!A) with R(t) being the range at a specific time t. Let S
denote the set of conceivable ranges a lineage may occupy.
This set comprises all 2n subsets of A, including the empty
set, where n is the number of areas in A. For example, if A
! {a,b} then S ! {Ø,{a},{b},{a,b}}. Often we are only
interested in cases where a lineage is actually present (see
below) so we define Strunc as the truncated set of S that ex-
cludes the empty set.

Estimating Probabilities of Ancestor-Descendant
Range Evolution

For each lineage (internode), we wish to know the matrix
of transition probabilities from ranges in Strunc at the time of
lineage origin to ranges in S at the end of the lineage’s du-
ration (i.e., when it branches or reaches the present). We
denote this matrix P. It is analogous to the probability matrix
of transitions between character states (e.g., nucleotide bases)
with an important difference: the set of possible ranges at
the end point includes the empty set, indicating global lineage
extinction.
We do not attempt to derive P analytically; instead, we

estimate it by simulating range evolution from all starting
points in Strunc over the duration of each lineage. The basic
procedure randomly generates a Markov chain of events
through time based on dispersal and extinction being super-
imposed Poisson processes operating within the confines of
the paleogeographic model (Fig. 2). Consider a lineage that
starts at time t0 and ends at time t1. We begin with the lineage
having a range R(t0) at time t0. The time and place of the
next event is predicted by randomly drawing a waiting time
"t for each area in R from the exponential distribution with
mean 1/(#D $ #E). The event occurs in the area with the
minimum waiting time at time t0 $ "t. The relative proba-
bility of the event being dispersal out of or extinction within

Exponen@ally-‐distributed	  @mes	  between	  events	  
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we revisit and apply the method to Nepokroeff et al.’s
(2003) study of Hawaiian Psychotria.

THE DISPERSAL-EXTINCTION-CLADOGENESIS (DEC)
MODEL

In this section we describe the stochastic model of
geographic range evolution, referred to hereafter as the
dispersal-extinction-cladogenesis (DEC) model, empha-
sizing how it differs from that described by Ree et al.
(2005) in the calculation of transition probabilities from
an instantaneous rate matrix. Readers should consult the
former paper for the original description of model fea-
tures retained identically here, particularly in how range
inheritance scenarios are enumerated and assigned prior
probabilities.

Geographic ranges.—We represent the geographic range
of a species as a string denoting its presence in a set of
areas. For three areas labeled 1, 2, and 3, the set of possible
ranges is thus ∅, 1, 2, 3, 12, 13, 23, 123. With the exception
of the empty range (∅), these comprise all theoretically
observable states for extant species.

Range evolution along phylogenetic branches.—In the ab-
sence of lineage divergence, the range of a species
evolves by two stochastic processes: dispersal between
areas (range expansion) and local extinction within ar-
eas (range contraction). Parameters for these are Di j , the
rate of dispersal from area i to area j , and Ei , the rate of
local extinction in area i . For n areas, the most general
model would have n2 − n independent (free) parameters
for dispersal rates: one for each direction between each
pair of areas. In addition, it would have n free parameters
representing area-specific local extinction rates. Simpler
models would assume fewer free parameters, with the
simplest having a single dispersal rate and a single lo-
cal extinction rate, each uniform across the areas in the
model and across the phylogeny.

These rate parameters can be used to construct the ma-
trix of instantaneous transition rates between geographic
ranges (Q). For three areas,

Q =





























∅ 1 2 3 12 13 23 123

∅ — 0 0 0 0 0 0 0
1 E1 — 0 0 D12 D13 0 0
2 E2 0 — 0 D21 0 D23 0
3 E3 0 0 — 0 D31 D32 0

12 0 E2 E1 0 — 0 0 D13 + D23

13 0 E3 0 E1 0 — 0 D12 + D32

23 0 0 E3 E2 0 0 — D21 + D31

123 0 0 0 0 E3 E2 E1 —





























.

(1)

(For clarity, geographic ranges at the start and end of a
transition are shown in order of increasing size along the
first column and row, respectively.) We assume that over
an infinitesimal time interval, only one event may occur,
so transition rates between ranges that differ by more
than one dispersal or extinction event are set to zero.

Non-zero cells in the matrix below the diagonal repre-
sent range contractions by local extinction; those above
the diagonal represent range expansions by dispersal.
Some range expansions involve a sum of rates; e.g., the
transition from range 12 to 123 involves dispersal rates
from areas 1 and 2 to area 3. In general, the rate of ex-
pansion from a starting range r to a wider range r ′ is the
sum of dispersal rates from all areas in r to the area of
expansion in r ′. The rate of contraction from r ′ back to r
is the rate of local extinction in that area. The elements
along the diagonal of the rate matrix are defined such
that the sum of rows is equal to zero.

Constructing the rate matrix Q algorithmically in this
manner brings us back to the equation for range transi-
tion probabilities as a function of time, P(t) = e−Qt, which
can be computed much faster (by orders of magnitude)
than the simulation-based method of Ree et al. (2005).
However, recall that in order to calculate the likelihood of
the data given the assumed tree, additional information
is needed; namely, an enumeration of possible ancestral
states at internal nodes and their prior probabilities.

Range evolution at cladogenesis events.—Following Ree
et al. (2005) and as described in the introductory section,
we assume that if an ancestor is widespread across two or
more areas, speciation can happen in one of two ways:
lineage divergence could arise either between a single
area and the rest of the range, or within a single area.
This leads to nonidentical range inheritance, with one
daughter species always inheriting a single-area range,
and the other inheriting either the remainder of the an-
cestral range or its entirety, respectively. Ree et al. (2005)
described how a flat prior for the ancestral range can be
multiplied by a flat prior for between- and within-area
divergence patterns to obtain the overall prior for each
range inheritance scenario.

It is worth noting that the above assumes cladogene-
sis events that are strictly bifurcating; i.e., that speciation
gives rise to two, and only two, descendant lineages. We
treat this as the general case and view simultaneous di-
vergence of more than two species from a common ances-
tor (as depicted by “hard” phylogenetic polytomies) as
exceptional. For the DEC model to include such cases, an
explicit rationale for enumerating polytomous range in-
heritance scenarios would be needed. By contrast, “soft”
polytomies indicative of phylogenetic uncertainty do not
require such extensions of the model and may be ac-
counted for statistically (see Discussion).

Inferring ancestral ranges by maximum likelihood.—With
a matrix of range transition rates (Q) derived from rates
of dispersal between areas and rates of local extinction
within areas, and prior probabilities for range inheritance
scenarios, we now have all the components necessary to
calculate the likelihood of a phylogenetic tree with ob-
served range data arrayed at its tips. This is done exactly
as for character data but integrating over the conditional
likelihoods of range inheritance scenarios rather than an-
cestral character states at internal nodes. The close corre-
spondence of the DEC model to character models allows
us in principle to use all maximum likelihood methods
that are normally applied to character inference. In the

Pij(t) = [exp {Qt}]ij
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FIG. 3. Inheritance of geographic ranges following speciation is modeled as three distinct scenarios. Speciation is assumed to involve
a single geographic area. When the ancestral range comprises a single area, that range is inherited identically by both descendant lineages
(scenario 1). When the ancestor is widespread (i.e., its range spans ! 1 area), one or both daughter species may inherit a range different
from their ancestor. Geographically isolated populations may diverge, such that daughters inherit mutually exclusive ranges (scenario
2). Alternatively, when speciation occurs within an area, one daughter inherits a range of just the area where divergence occurred, while
the other (the remainder of the ancestral lineage) inherits the entire ancestral range (scenario 3).

time. Following speciation, the ancestral range splits into
ranges Rx1 and Rx2, which are inherited by the lineages leading
to nodes y and z, respectively. The prior probability of this
scenario is the product of three terms, namely the priors
associated with the ancestral range, how it becomes subdi-
vided, and how the new ranges are inherited:

Pr(X ) " Pr(R ) # Pr(R , R ! R )x x1 x2 x

# Pr[R (t ) " R , R (t ) " R ]. (2)y x x1 z x x2

The likelihood of the above scenario is the product of its
prior probability and the conditional likelihoods of the de-
scendant nodes y and z:

L(X ) " Pr(X ) # L[y ! R (t ) " R ]y x x1

# L[z ! R (t ) " R ], (3)z x x2

where the conditional likelihood for node y is

L[y ! R (t ) " R ]y x x1

" Pr[R (t ) ! R (t ) " R ]L[R (t )]. (4)" y y y x x1 y y
R ∈Sy trunc

with the same expression applying to node z and Rx2. The
terms Pr[Ry(ty) ! Ry(tx) " Rx1] and Pr[Rz(tz) ! Rz(tx) " Rx2] are

range transition probabilities given by Py and, Pz, respec-
tively. If y is a terminal node, then L[Ry(ty)] " Pr(R) if R is
the extant range of that species; otherwise L[Ry(ty)] " 0. If
y is an internal node, L[Ry(ty)] is the fractional likelihood of
Ry at y prior to branching, which has already been calculated
during the postorder traversal of the tree.
The fractional likelihood of an ancestral range at an internal

node is thus obtained by summing over all its inheritance
scenarios. Obtaining the total likelihood for the observed
species ranges involves proceeding from the tips of the tree
to the root, using the familiar pruning algorithm of Felsen-
stein (1981) to evaluate the fractional likelihoods of ancestral
ranges at internal nodes. At the root, the total likelihood is
calculated by summing the fractional likelihoods associated
with each distinct ancestral range.

Comparing the Likelihoods of Alternative Range
Inheritance Scenarios

Although it is interesting and worthwhile to calculate the
global likelihood of observed species ranges given a phy-
logeny and paleogeographic model, our main objective at this
point is not to optimize the free parameters (rates of lineage
dispersal and extinction) against the data. Instead, we are

Allopatry	  

Peripatry	  

Sympatry	  Narrow	  
range	  

Widespread	  
range	  
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8 SYSTEMATIC BIOLOGY VOL. 57

FIGURE 1. Maximum likelihood parameter estimates for rates of dispersal (a) and local extinction (b) under the DEC model from trees of
two size categories simulated according to a geographic birth-death model (see text), then pruned of extinct branches. For each size, a random
sample of 300 out of 2000 trees are shown. Apparent rates (the number of actual events simulated on a pruned tree divided by tree length) are
plotted against estimated rates, with points below the diagonal representing underestimates. Bias toward underestimation is evident for both
dispersal and local extinction, with estimates of the latter consistently being close to zero.

Implementation

The DEC model and routines for estimating disper-
sal and extinction parameters and ancestral range inher-
itance scenarios are available in the software package
lagrange, distributed by the authors from http://code.
google.com/p/lagrange.

RANGE EVOLUTION IN HAWAIIAN PSYCHOTRIA

Objectives

We revisited the case of Hawaiian Psychotria
(Nepokroeff et al., 2003) as an empirical opportunity to
apply the current model, using the four areas defined
in that study: (1) Kaua‘i, including Ni‘ihau; (2) O‘ahu;
(3) Maui Nui (including Moloka‘i, Lana‘i, Maui, and
Kaho’olawe); and (4) Hawai‘i (Fig. 3a), which we label
K, O, M, and H. Our first objective was to fit their data
to a general four-area DEC model and explore inferences
on the phylogeny without imposing any temporal con-
ditions on range evolution corresponding to times of is-
land origin. Specifically, under this model we wished
to determine (1) which area was most likely colonized
by the ancestor of the clade; (2) the relative degree of
within-area versus between-area lineage divergence fol-
lowing dispersal, as inferred from ancestral range inher-
itance scenarios (i.e., the extent to which dispersal leads
to cladogenesis); and (3) whether simpler models, e.g.,
those allowing only dispersal between adjacent islands,
were favored over the general model. Our second ob-
jective was to construct a temporally stratified model of
range evolution reflecting absolute ages of the Hawai-
ian islands and then compare inferences between models
with and without such temporal constraints.

Methods

We used the maximum likelihood, ultrametric
molecular phylogeny from Nepokroeff et al. (2003),
which included 22 in-group populations representing
the 11 recognized endemic species. We modified it by
scaling its length to absolute time and editing the topol-
ogy to accommodate the model’s requirement that the
tree be completely bifurcating. On the assumption that
ancestral colonization occurred soon after the origin of
Kaua‘i, the oldest extant Hawaiian island, we set the root
age of the tree at 5.1 Myr. To resolve polytomies, we com-
bined the two O‘ahu populations of P. mariniana into a
single terminal and combined the three Maui Nui popu-
lations of P. mariniana into a single terminal, placing the
latter as sister to the Hawai‘i population of P. hawaiiensis.
We also grouped the Maui Nui populations of P. kad-
uana and P. mauiensis as sister taxa and assigned a very
short length (10−5) to the subtending branch of that clade.
These modifications are somewhat arbitrary (e.g., the an-
cestor could have colonized an island now submerged,
earlier than 5.1 Ma), so we emphasize that the empirical
results of our re-analysis should be treated with appro-
priate caution, with more weight given to the illustrative
value of the exercise.

We constructed a stratified model of four discrete time
periods corresponding to approximate maximum ages of
Kaua‘i (5.1 Myr), O‘ahu (3.7 Myr), Maui Nui (1.9 Myr),
and Hawai‘i (0.5 Myr; Carson et al., 1995). In each period,
geographic ranges and dispersal between areas were re-
stricted to include only extant islands but were otherwise
unconstrained; across periods, rates of dispersal and lo-
cal extinction were assumed to be constant.
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FIGURE 2. Proportion of nodes accurately reconstructed by maximum likelihood for ancestral range inheritance scenarios at cladogenesis
events on simulated trees, in relation to the sum of estimated rates of dispersal and local extinction. Rates are binned in intervals of 0.01, with
sample size (number of simulated trees) per bin for each tree size ranging from 246 to 574. All trees were simulated with a speciation rate of 0.4.

At the root of the tree, we considered only single-area
ranges, reasoning that colonization originally occurred
on a single island. The likelihood of each area at the root
was estimated using locally optimal rates of dispersal
and extinction (i.e., rates were optimized to their max-
imum likelihood values conditional on the root state),
corresponding to the “local” method of estimating ances-
tral character states by maximum likelihood (see Pagel,
1999). The optimal root area and rates were then fixed
for comparing likelihoods of alternative range inheri-
tance scenarios at internal nodes further up the tree. At
each node, the likelihood of each scenario was calculated
without conditioning on scenarios at any other nodes in
the tree.

Results

In the unconstrained model, Kaua‘i is the most likely
island of colonization by Psychotria, with other ar-
eas having successively lower likelihoods (Table 1), all
outside the confidence window of two log-likelihood

units (Edwards, 1992). Similarly, at most internal nodes,
optimal range inheritance scenarios also score signifi-
cantly better than any alternatives, but in some cases
other scenarios are also statistically plausible, indicating
localized uncertainty. With this in mind, for simplicity
we show and discuss only the optimal reconstruction
(Fig. 3b), which reveals five branches along which ranges
evolve, all involving dispersal events from single-area
ancestral ranges. Two of the branches also involve lo-
cal extinction events. The predominant pattern is that
widespread ranges do not persist for long before being
split by allopatric cladogenesis or reduced by local ex-
tinction. Three of the branches terminate in between-area
(vicariant) lineage divergence, suggesting that disper-
sal was a proximate cause of speciation in those cases
or, in other words, that colonization of a new island
led to rapid coalescence of a distinct lineage. By con-
trast, one instance of dispersal (O to OM, along the
branch subtending the P. kaduana clade) leads to within-
area lineage divergence, with the widespread range OM
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FIGURE 3.

Psychotria	  mariniana	  

Unconstrained	  
(GTR)	  

Stepping	  stone	  
(Small	  adjacent	  ranges:	  	  
K,	  O,	  M,	  H,	  KO,	  OM,	  MH)	  

Stra,fied	  
(@me-‐dependent	  GTR)	  
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also undergo speciation within a single region, yield-
ing one endemic and one wide-ranging daughter, that
is, the daughters have states A and AB if speciation
was in Region A, or B and AB. The region-specific per-
lineage rates for this within-region mode of speciation
are sA and sB. Alternatively, an AB species may diverge
along the boundary that separates the regions, yielding
one A and one B daughter. The rate of this between-
region mode of speciation is sAB. Because widespread
lineages are subject to both the between- and within-
region modes of cladogenesis, their effective rate of
speciation is greater than that of endemics; it is the sum
of sA, sB, and sAB.

Identical inheritance of geographic distribution is
likely impossible when examined on a fine spatial scale,
but we ignore structure inside regions. Therefore, al-
though the two daughter ranges of an endemic parent
are equal in our model, we do not specify whether
within-region speciation is allopatric, parapatric, or
sympatric. Between-region speciation events in GeoSSE
are not traditional vicariance events (a physical change
in the connectivity of the regions that affects all species)
but allow different species to respond individually to
their environment.

Formulation
Because the mathematical description of the GeoSSE

model is similar to BiSSE (Maddison et al. 2007), we
present the formulation only briefly here; a full deriva-
tion can be found in online Appendix 1 (available from
http://dx.doi.org/10.5061/dryad.8343). A schematic
comparison of GeoSSE and BiSSE is shown in Figure 1.

Like BiSSE, GeoSSE assumes a fully resolved, dated
phylogeny of the group in question. Although BiSSE
can in principle allow for ancestral nodes with hard
polytomies (via modification of Equation 4 in Maddison
et al. 2007), the possibility of character state changes at
nodes makes this unwieldy for GeoSSE. Phylogenetic
uncertainty can better be incorporated by performing
analyses across a posterior set of bifurcating trees, as we
illustrate in our empirical case study below.

Geographic ranges of extant species should be known
with sufficient precision to say whether each species
is present in Region A only, Region B only, or both

regions. Incomplete sampling, either randomly dis-
tributed across the tree or in the form of unresolved
clades, can be incorporated as in FitzJohn et al. (2009),
as can uncertain tip state information. Such incom-
plete information, of course, reduces the power of the
analysis.

Likelihood of tree and character states (D).—The likelihood
DNi(t) is proportional to the probability of a lineage be-
ginning at time t in state i (i=A, B, or AB) evolving into
a clade with identical branching structure and character
states as the (sub)tree actually observed to descend from
N. The branching process will be viewed as proceeding
forward in time, though time is defined to increase to-
wards the root of the tree (Online Fig. A1-1).

Changes in the DNi over time within a branch are
described by

dDNA

dt
=−(sA + dA + xA)DNA(t) + dADNAB(t)

+ 2sADNA(t)EA(t), (1a)
dDNB

dt
=−(sB + dB + xB)DNB(t) + dBDNAB(t)

+ 2sBDNB(t)EB(t), (1b)
dDNAB

dt
=−(sA + sB + sAB + xA + xB)DNAB(t)

+ xADNB(t) + xBDNA(t)
+ sA[EA(t)DNAB(t) + EAB(t)DNA(t)]
+ sB[EB(t)DNAB(t) + EAB(t)DNB(t)]
+ sAB[EA(t)DNB(t) + EB(t)DNA(t)], (1c)

where Ei(t) is the likelihood that a lineage in state i goes
extinct before the present time, described in more detail
below.

Comparing Equation 1 with Equation 3 of Maddison
et al. (2007), the description for states A and B (Equa-
tions 1a and 1b) is quite similar to that for BiSSE’s two
states. A lineage remains unbranched and in state A,
for example, if it does not speciate, disperse, or go ex-
tinct (first term in Equation 1a); it changes state by dis-
persing (second term in Equation 1a); and if speciation
does occur, one daughter lineage goes extinct before the

FIGURE 1. The states and allowed transitions in a) BiSSE and b) GeoSSE. Both models have six rate parameters and allow state-dependent
speciation (λ or s) and extinction (µ or x), and anagenetic state changes (q, d, x). GeoSSE additionally allows state changes during speciation in
association with the third (AB) character state.
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also undergo speciation within a single region, yield-
ing one endemic and one wide-ranging daughter, that
is, the daughters have states A and AB if speciation
was in Region A, or B and AB. The region-specific per-
lineage rates for this within-region mode of speciation
are sA and sB. Alternatively, an AB species may diverge
along the boundary that separates the regions, yielding
one A and one B daughter. The rate of this between-
region mode of speciation is sAB. Because widespread
lineages are subject to both the between- and within-
region modes of cladogenesis, their effective rate of
speciation is greater than that of endemics; it is the sum
of sA, sB, and sAB.

Identical inheritance of geographic distribution is
likely impossible when examined on a fine spatial scale,
but we ignore structure inside regions. Therefore, al-
though the two daughter ranges of an endemic parent
are equal in our model, we do not specify whether
within-region speciation is allopatric, parapatric, or
sympatric. Between-region speciation events in GeoSSE
are not traditional vicariance events (a physical change
in the connectivity of the regions that affects all species)
but allow different species to respond individually to
their environment.

Formulation
Because the mathematical description of the GeoSSE

model is similar to BiSSE (Maddison et al. 2007), we
present the formulation only briefly here; a full deriva-
tion can be found in online Appendix 1 (available from
http://dx.doi.org/10.5061/dryad.8343). A schematic
comparison of GeoSSE and BiSSE is shown in Figure 1.

Like BiSSE, GeoSSE assumes a fully resolved, dated
phylogeny of the group in question. Although BiSSE
can in principle allow for ancestral nodes with hard
polytomies (via modification of Equation 4 in Maddison
et al. 2007), the possibility of character state changes at
nodes makes this unwieldy for GeoSSE. Phylogenetic
uncertainty can better be incorporated by performing
analyses across a posterior set of bifurcating trees, as we
illustrate in our empirical case study below.

Geographic ranges of extant species should be known
with sufficient precision to say whether each species
is present in Region A only, Region B only, or both

regions. Incomplete sampling, either randomly dis-
tributed across the tree or in the form of unresolved
clades, can be incorporated as in FitzJohn et al. (2009),
as can uncertain tip state information. Such incom-
plete information, of course, reduces the power of the
analysis.

Likelihood of tree and character states (D).—The likelihood
DNi(t) is proportional to the probability of a lineage be-
ginning at time t in state i (i=A, B, or AB) evolving into
a clade with identical branching structure and character
states as the (sub)tree actually observed to descend from
N. The branching process will be viewed as proceeding
forward in time, though time is defined to increase to-
wards the root of the tree (Online Fig. A1-1).

Changes in the DNi over time within a branch are
described by

dDNA

dt
=−(sA + dA + xA)DNA(t) + dADNAB(t)

+ 2sADNA(t)EA(t), (1a)
dDNB

dt
=−(sB + dB + xB)DNB(t) + dBDNAB(t)

+ 2sBDNB(t)EB(t), (1b)
dDNAB

dt
=−(sA + sB + sAB + xA + xB)DNAB(t)

+ xADNB(t) + xBDNA(t)
+ sA[EA(t)DNAB(t) + EAB(t)DNA(t)]
+ sB[EB(t)DNAB(t) + EAB(t)DNB(t)]
+ sAB[EA(t)DNB(t) + EB(t)DNA(t)], (1c)

where Ei(t) is the likelihood that a lineage in state i goes
extinct before the present time, described in more detail
below.

Comparing Equation 1 with Equation 3 of Maddison
et al. (2007), the description for states A and B (Equa-
tions 1a and 1b) is quite similar to that for BiSSE’s two
states. A lineage remains unbranched and in state A,
for example, if it does not speciate, disperse, or go ex-
tinct (first term in Equation 1a); it changes state by dis-
persing (second term in Equation 1a); and if speciation
does occur, one daughter lineage goes extinct before the

FIGURE 1. The states and allowed transitions in a) BiSSE and b) GeoSSE. Both models have six rate parameters and allow state-dependent
speciation (λ or s) and extinction (µ or x), and anagenetic state changes (q, d, x). GeoSSE additionally allows state changes during speciation in
association with the third (AB) character state.
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time of observation in order for the branch to appear
without a node in the reconstructed tree (third term in
Equation 1a). The AB state operates differently, how-
ever. Dispersal is not an option for a species already
present in both regions, so dA and dB do not appear in
Equation 1c. Local extinction causes a change of state
out of AB (second and third terms in Equation 1c). Spe-
ciation can occur in any of three ways (last three terms of
Equation 1c), but if it does, one of the daughter lineages
must go extinct before the present.

When N is a tip, the DNi(0) are the initial conditions,
equal to the probability of finding state i at that tip. This
value is one for the observed state i (or fi if only a propor-
tion fi of tips of state i are included in the tree, FitzJohn
et al. [2009]) and zero for the others.

Likelihoods from sister branches (denoted N and M)
must be combined at the node of their immediate ances-
tor (denoted C; see online Fig. A1-1) with a speciation
event. The likelihood of a lineage just below the ances-
tral node, DCi(tC), is

DCA(tC) =DNA(tC)DMA(tC)sA, (2a)
DCB(tC) =DNB(tC)DMB(tC)sB, (2b)

DCAB(tC) =
1
2
[DNAB(tC)DMA(tC) + DNA(tC)DMAB(tC)]sA

+
1
2
[DNAB(tC)DMB(tC) + DNB(tC)DMAB(tC)]sB

+
1
2
[DNA(tC)DMB(tC) + DNB(tC)DMA(tC)]sAB.

(2c)

Comparing Equation 2 with Equation 4 of Maddison
et al. (2007), the node join for states A and B is as simple
as in BiSSE because a species endemic to a single region
can only produce daughters that are themselves only in
that region. A parent species in AB, however, can pro-
duce three possible pairs of daughters: AB and A, AB
and B, or A and B (terms one to three, respectively, of
Equation 2c).

When the ancestral node is the root of the tree (C =
R), the conditional likelihoods DRi(tR)must be summed
with an appropriate weighting to obtain the likelihood
of the entire tree given the parameter values. Equal or
equilibrium frequencies of the three geographic states
can be used as the weights, but this is not always appro-
priate (Goldberg and Igić 2008). A more robust solution
is to weight each state by its likelihood of giving rise to
the observed data (FitzJohn et al. 2009), which we do in
all analyses below.

Likelihood of extinction (E).—The probability that a lin-
eage in state i at time t goes extinct by the present time
(t = 0) is denoted Ei(t). Changes in Ei over time are de-
scribed by

dEA

dt
=−(sA + dA + xA)EA(t)+xA + dAEAB(t) + sAEA(t)2,

(3a)

dEB

dt
=−(sB + dB + xB)EB(t) + xB + dBEAB(t) + sBEB(t)2,

(3b)
dEAB

dt
=−(sA + sB + sAB + xA + xB)EAB(t) + xAEB(t)

+ xBEA(t) + sAEAB(t)EA(t) + sBEAB(t)EB(t)
+ sABEA(t)EB(t). (3c)

Equation 3 is analogous to Equation 7 of Maddison
et al. (2007) for species endemic to Regions A or B and
slightly more complicated for AB species because of the
additional modes of speciation. The possible ways in
which a lineage can eventually go extinct are no events
at this particular time but later extinction (first term of
each of Equation 3abc); immediate extinction (only pos-
sible for endemics, second term of Equations 3a and 3b);
a state change at this time via dispersal for endemics
(third term of Equations 3a and 3b) or extinction for
widespread species (second and third terms of Equa-
tion 3c), followed by eventual extinction from the new
state; or speciation at this time followed by eventual
extinction of both daughter lineages (final terms of each
of Equation 3abc).

Extinction can only occur if some amount of time
has passed, so the initial condition is Ei(0) = 0 when
taxon sampling is complete or Ei(0) = 1 − fi if only a
proportion fi of tips of state i are included in the tree
(FitzJohn et al. 2009). As in BiSSE, the extinction proba-
bility equations (Equation 3) can be solved numerically.
Their solutions can then be used to obtain solutions
to Equation 1, which, together with the procedure for
combining branch likelihoods at nodes (Equation 2),
allows the tree likelihood to be computed for a speci-
fied set of parameter values. Maximum likelihood esti-
mates or posterior probability distributions of regional
speciation, extinction, and dispersal rates can then be
obtained.

SIMULATION TESTS

We used simulation tests to assess the accuracy and
power of the GeoSSE model under a collection of sce-
narios for generating spatial structure in diversity and
endemism.

Methods
We simulated trees using a continuous-time birth–

death process under a variety of parameter values sum-
marized in Table 1. Each simulation started with a single
lineage in state AB, and each scenario was tested with
a batch of 500 trees. The tree sizes varied because the
simulations were run for a fixed period of time rather
than to a fixed number of tips, but we selected time
periods such that the expected number of tips was 200.
In order to consider a tree for analysis, we required a
minimum of 20 tips and the existence of at least two
of the three possible tip states. Acquisition bias (Lewis
2001) is, therefore, a possible artifact that may reduce
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time of observation in order for the branch to appear
without a node in the reconstructed tree (third term in
Equation 1a). The AB state operates differently, how-
ever. Dispersal is not an option for a species already
present in both regions, so dA and dB do not appear in
Equation 1c. Local extinction causes a change of state
out of AB (second and third terms in Equation 1c). Spe-
ciation can occur in any of three ways (last three terms of
Equation 1c), but if it does, one of the daughter lineages
must go extinct before the present.

When N is a tip, the DNi(0) are the initial conditions,
equal to the probability of finding state i at that tip. This
value is one for the observed state i (or fi if only a propor-
tion fi of tips of state i are included in the tree, FitzJohn
et al. [2009]) and zero for the others.

Likelihoods from sister branches (denoted N and M)
must be combined at the node of their immediate ances-
tor (denoted C; see online Fig. A1-1) with a speciation
event. The likelihood of a lineage just below the ances-
tral node, DCi(tC), is

DCA(tC) =DNA(tC)DMA(tC)sA, (2a)
DCB(tC) =DNB(tC)DMB(tC)sB, (2b)

DCAB(tC) =
1
2
[DNAB(tC)DMA(tC) + DNA(tC)DMAB(tC)]sA

+
1
2
[DNAB(tC)DMB(tC) + DNB(tC)DMAB(tC)]sB

+
1
2
[DNA(tC)DMB(tC) + DNB(tC)DMA(tC)]sAB.

(2c)

Comparing Equation 2 with Equation 4 of Maddison
et al. (2007), the node join for states A and B is as simple
as in BiSSE because a species endemic to a single region
can only produce daughters that are themselves only in
that region. A parent species in AB, however, can pro-
duce three possible pairs of daughters: AB and A, AB
and B, or A and B (terms one to three, respectively, of
Equation 2c).

When the ancestral node is the root of the tree (C =
R), the conditional likelihoods DRi(tR)must be summed
with an appropriate weighting to obtain the likelihood
of the entire tree given the parameter values. Equal or
equilibrium frequencies of the three geographic states
can be used as the weights, but this is not always appro-
priate (Goldberg and Igić 2008). A more robust solution
is to weight each state by its likelihood of giving rise to
the observed data (FitzJohn et al. 2009), which we do in
all analyses below.

Likelihood of extinction (E).—The probability that a lin-
eage in state i at time t goes extinct by the present time
(t = 0) is denoted Ei(t). Changes in Ei over time are de-
scribed by

dEA

dt
=−(sA + dA + xA)EA(t)+xA + dAEAB(t) + sAEA(t)2,

(3a)

dEB

dt
=−(sB + dB + xB)EB(t) + xB + dBEAB(t) + sBEB(t)2,

(3b)
dEAB

dt
=−(sA + sB + sAB + xA + xB)EAB(t) + xAEB(t)

+ xBEA(t) + sAEAB(t)EA(t) + sBEAB(t)EB(t)
+ sABEA(t)EB(t). (3c)

Equation 3 is analogous to Equation 7 of Maddison
et al. (2007) for species endemic to Regions A or B and
slightly more complicated for AB species because of the
additional modes of speciation. The possible ways in
which a lineage can eventually go extinct are no events
at this particular time but later extinction (first term of
each of Equation 3abc); immediate extinction (only pos-
sible for endemics, second term of Equations 3a and 3b);
a state change at this time via dispersal for endemics
(third term of Equations 3a and 3b) or extinction for
widespread species (second and third terms of Equa-
tion 3c), followed by eventual extinction from the new
state; or speciation at this time followed by eventual
extinction of both daughter lineages (final terms of each
of Equation 3abc).

Extinction can only occur if some amount of time
has passed, so the initial condition is Ei(0) = 0 when
taxon sampling is complete or Ei(0) = 1 − fi if only a
proportion fi of tips of state i are included in the tree
(FitzJohn et al. 2009). As in BiSSE, the extinction proba-
bility equations (Equation 3) can be solved numerically.
Their solutions can then be used to obtain solutions
to Equation 1, which, together with the procedure for
combining branch likelihoods at nodes (Equation 2),
allows the tree likelihood to be computed for a speci-
fied set of parameter values. Maximum likelihood esti-
mates or posterior probability distributions of regional
speciation, extinction, and dispersal rates can then be
obtained.

SIMULATION TESTS

We used simulation tests to assess the accuracy and
power of the GeoSSE model under a collection of sce-
narios for generating spatial structure in diversity and
endemism.

Methods
We simulated trees using a continuous-time birth–

death process under a variety of parameter values sum-
marized in Table 1. Each simulation started with a single
lineage in state AB, and each scenario was tested with
a batch of 500 trees. The tree sizes varied because the
simulations were run for a fixed period of time rather
than to a fixed number of tips, but we selected time
periods such that the expected number of tips was 200.
In order to consider a tree for analysis, we required a
minimum of 20 tips and the existence of at least two
of the three possible tip states. Acquisition bias (Lewis
2001) is, therefore, a possible artifact that may reduce
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time of observation in order for the branch to appear
without a node in the reconstructed tree (third term in
Equation 1a). The AB state operates differently, how-
ever. Dispersal is not an option for a species already
present in both regions, so dA and dB do not appear in
Equation 1c. Local extinction causes a change of state
out of AB (second and third terms in Equation 1c). Spe-
ciation can occur in any of three ways (last three terms of
Equation 1c), but if it does, one of the daughter lineages
must go extinct before the present.

When N is a tip, the DNi(0) are the initial conditions,
equal to the probability of finding state i at that tip. This
value is one for the observed state i (or fi if only a propor-
tion fi of tips of state i are included in the tree, FitzJohn
et al. [2009]) and zero for the others.

Likelihoods from sister branches (denoted N and M)
must be combined at the node of their immediate ances-
tor (denoted C; see online Fig. A1-1) with a speciation
event. The likelihood of a lineage just below the ances-
tral node, DCi(tC), is

DCA(tC) =DNA(tC)DMA(tC)sA, (2a)
DCB(tC) =DNB(tC)DMB(tC)sB, (2b)

DCAB(tC) =
1
2
[DNAB(tC)DMA(tC) + DNA(tC)DMAB(tC)]sA

+
1
2
[DNAB(tC)DMB(tC) + DNB(tC)DMAB(tC)]sB

+
1
2
[DNA(tC)DMB(tC) + DNB(tC)DMA(tC)]sAB.

(2c)

Comparing Equation 2 with Equation 4 of Maddison
et al. (2007), the node join for states A and B is as simple
as in BiSSE because a species endemic to a single region
can only produce daughters that are themselves only in
that region. A parent species in AB, however, can pro-
duce three possible pairs of daughters: AB and A, AB
and B, or A and B (terms one to three, respectively, of
Equation 2c).

When the ancestral node is the root of the tree (C =
R), the conditional likelihoods DRi(tR)must be summed
with an appropriate weighting to obtain the likelihood
of the entire tree given the parameter values. Equal or
equilibrium frequencies of the three geographic states
can be used as the weights, but this is not always appro-
priate (Goldberg and Igić 2008). A more robust solution
is to weight each state by its likelihood of giving rise to
the observed data (FitzJohn et al. 2009), which we do in
all analyses below.

Likelihood of extinction (E).—The probability that a lin-
eage in state i at time t goes extinct by the present time
(t = 0) is denoted Ei(t). Changes in Ei over time are de-
scribed by

dEA

dt
=−(sA + dA + xA)EA(t)+xA + dAEAB(t) + sAEA(t)2,

(3a)

dEB

dt
=−(sB + dB + xB)EB(t) + xB + dBEAB(t) + sBEB(t)2,

(3b)
dEAB

dt
=−(sA + sB + sAB + xA + xB)EAB(t) + xAEB(t)

+ xBEA(t) + sAEAB(t)EA(t) + sBEAB(t)EB(t)
+ sABEA(t)EB(t). (3c)

Equation 3 is analogous to Equation 7 of Maddison
et al. (2007) for species endemic to Regions A or B and
slightly more complicated for AB species because of the
additional modes of speciation. The possible ways in
which a lineage can eventually go extinct are no events
at this particular time but later extinction (first term of
each of Equation 3abc); immediate extinction (only pos-
sible for endemics, second term of Equations 3a and 3b);
a state change at this time via dispersal for endemics
(third term of Equations 3a and 3b) or extinction for
widespread species (second and third terms of Equa-
tion 3c), followed by eventual extinction from the new
state; or speciation at this time followed by eventual
extinction of both daughter lineages (final terms of each
of Equation 3abc).

Extinction can only occur if some amount of time
has passed, so the initial condition is Ei(0) = 0 when
taxon sampling is complete or Ei(0) = 1 − fi if only a
proportion fi of tips of state i are included in the tree
(FitzJohn et al. 2009). As in BiSSE, the extinction proba-
bility equations (Equation 3) can be solved numerically.
Their solutions can then be used to obtain solutions
to Equation 1, which, together with the procedure for
combining branch likelihoods at nodes (Equation 2),
allows the tree likelihood to be computed for a speci-
fied set of parameter values. Maximum likelihood esti-
mates or posterior probability distributions of regional
speciation, extinction, and dispersal rates can then be
obtained.

SIMULATION TESTS

We used simulation tests to assess the accuracy and
power of the GeoSSE model under a collection of sce-
narios for generating spatial structure in diversity and
endemism.

Methods
We simulated trees using a continuous-time birth–

death process under a variety of parameter values sum-
marized in Table 1. Each simulation started with a single
lineage in state AB, and each scenario was tested with
a batch of 500 trees. The tree sizes varied because the
simulations were run for a fixed period of time rather
than to a fixed number of tips, but we selected time
periods such that the expected number of tips was 200.
In order to consider a tree for analysis, we required a
minimum of 20 tips and the existence of at least two
of the three possible tip states. Acquisition bias (Lewis
2001) is, therefore, a possible artifact that may reduce
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Figure A1-1: A portion of a phylogenetic tree, illustrating notation used in the likelihood
derivation.
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FIGURE 2. Maximum likelihood parameter estimates under asymmetries in each of a) speciation, b) extinction, and c) dispersal. Of the
500 trees per batch, a representative 150 are shown. The symmetric parameter values (Batch 1 in Table 1) are shown by open circles, and the
asymmetric parameter values (Batches 2–4 for panels (a–c), respectively) are shown by filled triangles. Large gray symbols show the median
parameter estimates for all trees in each batch, and dashed lines show the values used in the simulations. Symbol sizes indicate the number of
tips per tree, with the scale shown in the panel (a) legend.

scored well, lowering the selection of the correct model
to 35% and 33% of trees for Batches 3 and 4, respectively,
and always scoring comparably to or better than the cor-
rect model for Batch 2. These results are consistent with
the known tendency of AIC to favor parameter-rich
models (Kass and Raftery 1995), and we therefore pre-
fer to conduct our subsequent inference by comparing
parameter estimates rather than by selecting among
models.

Figure 2 shows the effects of tree size and correlations
between corresponding parameters in Batches 1–4. The
median rate estimates under the six parameter model
across each batch of 500 trees were close to the values
used in the simulations. The handful of outlier points
were mostly small trees. Asymmetry in speciation rate
could be identified more reliably across trees than could
asymmetry in dispersal or extinction, though the pa-
rameter clouds for even those quantities show moderate
separation (keep in mind the high density of points near
the true values).

Geographic mode of speciation.—The GeoSSE model al-
lows us to ask whether speciation occurs mainly within

regions (sA and/or sB dominate) or if it involves repro-
ductive isolation across the border between the regions
(sAB dominates). We consider three scenarios relating
to the geographic mode of speciation: both within- and
between-region speciation (Batch 5), within-region only
(sAB = 0, Batch 6), and between-region only (sA = sB = 0,
Batch 7). Parameter values are given in Table 1 and his-
tograms of maximum likelihood estimates of the three
speciation rates are shown in Figure 3.

When speciation happens only within regions, sAB is
usually correctly estimated to be near zero, and different
values for sA and sB can easily be distinguished (Fig. 3b).
When speciation is only between regions, sA and sB are
correctly estimated near zero, and the positive value of
sAB is correctly found (Fig. 3c). When speciation occurs
both within and between regions, the three speciation
rates can on average be recovered, but their distribu-
tions across trees are broader and overlapping (Fig. 3a).
When between-region speciation occurs but is ignored,
estimates of sA and sB are correctly ordered and distin-
guished but are biased substantially upward (by more
than 40% with the Batch 5 parameter values; results not
shown).

FIGURE 3. Histograms of maximum likelihood parameter estimates, with emphasis on geographic mode of speciation. Panels (a–c) are for
Batches 5–7, respectively (Table 1). Arrows indicate the parameter values used in the simulations. In panel (c), the results for sA and sB are nearly
identical thus overwrite each other.
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BayArea	  

Dispersal-‐Ex@rpa@on	  model	  
Distance	  effects	  as	  a	  free	  parameter	  
Scales	  for	  many	  areas	  
	  
	  
Work	  by:	  

Landis	  et	  al.,	  2013	  (Syst	  Biol)	  

	  



For	  more	  areas,	  	  	  	  	  	  explodes	  Q

3	  areas	   10	  areas	  

210 ⇥ 210 = 1024⇥ 1024

Intractable	  for	  more	  than	  ten	  areas	  



Inspired	  by	  Robinson	  et	  al.,	  2003	  (Mol	  Biol	  Evol)	  
	  
Key	  concepts	  
1.  Propose	  biogeographic	  histories,	  	  
2.  Compute	  likelihood,	  	  
3.  Approximate	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  using	  

	  Markov	  chain	  Monte	  Carlo	  (MCMC)	  

L�,H

P (�, H | D)

H

How	  to	  infer	  large	  Q?	  



1.	  Propose	  biogeographic	  histories,	  H



L�,H2.	  Compute	  likelihood,	  

Range	  evolu@on	  events	  from	  range	  	  	  	  	  	  	  	  	  	  	  	  	  :	  
	   	   	   	  	  
	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  sum	  of	  rates	  leaving	  	  
	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  prob	  any	  event	  at	  @me	  	  
	   	   	   	   	   	   	  prob	  next	  event	  is	  

	  
	  	  	  	  	  	  	  =	  product	  of	  event	  types	  &	  @mes	  over	  tree	  L�,H

ri/r
re�rt

jr =
X

rj



P (�, H | D)

L�,Hhigh	  
L�,Hlow	  

3.	  Approximate	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  using	  MCMC	  P (�, H | D)



Distance-‐dependent	  dispersal	  model	  

Infer	  distance	  effect	  parameter	  
	  
Where	  is	  next	  dispersal	  event	  given	  current	  range?	  
	  
	  
	  

	  
	  
	  
	  

0	   1	   2	   4	  

Collapses	  to	  “independence”	  model	  

Anywhere	   Nearby	  



Distance	  dependent	  rate	  matrix	  

only a single area can be gained or lost. In other words, each row of Q contains up to N positive,

non-zero entries, which correspond to the rates at which any one of the N areas switches between

absent and present (i.e., the N 0 ! 1 and 1 ! 0 positive entries of the row). Additionally, each

row contains a single, negative diagonal entry, which accounts for the time during which no change

in geographic range occurs, defined as Qii = � P
i 6=j Qij , and ensures that each row of of Q sums

to zero. The remaining entries in Q have a value of zero, as they entail an instantaneous change in

geographic distribution involving two or more areas.

We define a distance-dependent dispersal model, MD, where the rate of gaining a particular area

(0 ! 1) depends on the relative proximity of available areas to those currently occupied by a lineage;

that is, the rate of colonizing a nearby area just outside the perimeter of the current geographic

range should be greater than that of colonizing a relatively remote area. The precise nature of the

relationship between geographic distance and dispersal probability might be specified in numerous

ways (see, e.g., Wallace 1887; MacArthur and Wilson 1967; Hanski 1998). Our distance-dependent

model specifies a simple relationship in which the probability of dispersal between two areas is

inversely related to the geographic distance between them.

Let R
(a)
Yi,Yj

be the rate of change from the geographic range Yi to the geographic range Yj , where

Yi and Yj di↵er only at the single area index a (again, reflecting the fact that this is a one-change-

at-a-time model). Also, let �0 2 ✓ and �1 2 ✓ be the respective rates at which an individual area

is lost or gained within a geographic range, and ⌘(Yi, Yj , a, �) be a dispersal-rate modifier that

accounts for correlative distance e↵ects. We define the instantaneous dispersal rate as

R
(a)
Yi,Yj

=

8
>>>>>>>>>><

>>>>>>>>>>:

�0 if Yj,a = 0

�1⌘(Yi, Yj , a, �) if Yj,a = 1

0 if Yi and Yj di↵er at more than one area

0 if Yj = (0, 0, . . . , 0)

(1)

and the distance-dependent dispersal rate modifier as

⌘(Yi, Yj , a, �) =
NX

n=1

1{Yi,n=1}d(Gn, Ga)
��

⇥
PN

m=1 1{Yj,m=0}
PN

m=1 1{Yj,m=0}

⇣PN
n=1 1{Yi,n=1}d(Gn, Gm)��

⌘ (2)

7

Ex,rpa,on 	   	  Uniform	  at	  random	  
Dispersal 	   	   	  Modified	  by	  distance	  
Ex,nc,on 	   	   	  Forbidden	  



Distance-‐dependent	  rate	  modifier	  

Figure 2: Cartoon of the computation of the distance-dependent dispersal rate-modifier, ⌘(·). Here,

we are interested in computing the rate of Yi = (1, 1, 0, 0) transitioning to Yj = (1, 1, 0, 1). The

first term computes the sum of inverse distances raised to the power � between the area of interest

(i.e., 4) and all currently occupied areas (i.e., areas 1 and 2). The second term then normalizes this

quantity by dividing by the sum of inverse distances raised to the power � between all occupied-

unoccupied area-pairs (i.e., the denominator), then multiplying by number of currently unoccupied

areas (i.e., 2, the numerator).

0 0
1 2

3 4
0 0

1 2

3 4
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1 2

3 4

⌘(Yi = (1, 1, 0, 0) ! Yj = (1, 1, 0, 1), a = 4, �) =

d(G1, G4)
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��

| {z }
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Con@nuous	  models	  

Brownian	  mo@on	  
Each	  taxon	  is	  an	  individual	  sample	  
Epidemiology	  models	  
	  
	  
Work	  by:	  

Lemmon	  &	  Lemmon,	  2008	  (Syst	  Biol)	  
Lemey	  et	  al.,	  2010	  (Mol	  Biol	  Evol)	  

	  
	  



2D	  Brownian	  mo@on	  

X(0)	  

X(T)	  



Relaxed	  random	  walk	  

Continuous Phylogeographic Diffusion Using Relaxed RandomWalks · doi:10.1093/molbev/msq067 MBE

FIG. 4. Spatiotemporal dynamics of the rabies epidemic among North
American raccoons.We provide snapshots of the dispersal pattern for
August 1973, 1983, 1993, and 2003. Lines represent MCC phylogeny
branches projected on the surface. The uncertainty on the location
of raccoon rabies is represented by transparent polygons. These 80%
HPD regions are obtained by contouring a time slice of the posterior

have often been found too variable to be of much practical
use in previous applications (Schluter et al. 1997).

For the degree of uncertainty observed in the rabies epi-
demic example, marginal likelihood approximations using
an IS estimator (Suchard et al. 2003; Redelings and Suchard
2005) provide a good measure with which to compare
model fit. Not surprisingly with this tool, it proves much
harder to discriminate diffusion processes with very low
overdispersion from the BD models. This suggests that the
high estimator variance of IS confounds interpreting small
differences in marginal likelihoods. Fortunately, large differ-
ences, furnishing large BFs, are common when performing
Bayesianmodel selection in a phylogenetic setting (Suchard
et al. 2001; Edwards, Liu et al. 2007; Drummond and Suchard
2008) In borderline cases, more powerful BF estimators are
readily available, for example, path sampling (Lartillot and
Philippe 2006), and they are currently being implemented
in the BEAST framework.

Although it remains to be established howmuchoverdis-
persion characterizes real spatial diffusion processes, the
relatively simple case of raccoon rabies expansion already
shows branch-specific diffusion rates varying within almost
200% of the mean rate. We therefore anticipate that a con-
siderable deviation from the BD model may hold true for
phylogeographic dispersal of many organisms. However, we
caution readers against the indiscriminate use of the most
flexible models, such as the lognormal-RRW, over more re-
strictive processes, such as the gamma-RRW with random
or fixed degrees of freedom, when the data do not demand
the additional variation. The theoretical properties of these
RRWs still warrant further study to determine the data sam-
pling conditions underwhich each RRW is guaranteed to re-
turn a proper posterior distribution. For example, when the
degrees of freedomare randomunder the gamma-RRW, the
diffusion increments are Student’s t distributed. Even here,
recording exactly equal sampling locations for two or more
taxa, often through rounding, generates an improper pos-
terior with multivariate Student’s t increments (Frenández
and Steel 1999). Appropriately restrictive RRWs are oneway
to hedge against such difficulties.

Inspired by developments toward relaxing molecular
clocks, we model branch variation in the phylogenetic con-
tinuous diffusion process. In the rabies epidemic example,
the lognormal-RRW appears to fit better than the gamma-
RRW, most likely because the former accommodates higher
levels of overdispersion. However, as mentioned above, the
most appropriate underlying hyperdistributionmay be data

←
phylogeny distribution and imputing the location on each branch
in each phylogeny using the precision matrix parameters for the
respective sample. The white–red color gradient informs the rel-
ative age of the dispersal pattern (older–recent). A green cir-
cle marks Pendleton County, WV, where the epizootic’s first case
was reported in 1977. The maps are based on satellite pictures
made available in Google Earth (http://earth.google.com). A dynamic
visualization of the spatiotemporal reconstruction can be explored at
http://www.phylogeography.org/.
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FIG. 4. Spatiotemporal dynamics of the rabies epidemic among North
American raccoons.We provide snapshots of the dispersal pattern for
August 1973, 1983, 1993, and 2003. Lines represent MCC phylogeny
branches projected on the surface. The uncertainty on the location
of raccoon rabies is represented by transparent polygons. These 80%
HPD regions are obtained by contouring a time slice of the posterior

have often been found too variable to be of much practical
use in previous applications (Schluter et al. 1997).

For the degree of uncertainty observed in the rabies epi-
demic example, marginal likelihood approximations using
an IS estimator (Suchard et al. 2003; Redelings and Suchard
2005) provide a good measure with which to compare
model fit. Not surprisingly with this tool, it proves much
harder to discriminate diffusion processes with very low
overdispersion from the BD models. This suggests that the
high estimator variance of IS confounds interpreting small
differences in marginal likelihoods. Fortunately, large differ-
ences, furnishing large BFs, are common when performing
Bayesianmodel selection in a phylogenetic setting (Suchard
et al. 2001; Edwards, Liu et al. 2007; Drummond and Suchard
2008) In borderline cases, more powerful BF estimators are
readily available, for example, path sampling (Lartillot and
Philippe 2006), and they are currently being implemented
in the BEAST framework.

Although it remains to be established howmuchoverdis-
persion characterizes real spatial diffusion processes, the
relatively simple case of raccoon rabies expansion already
shows branch-specific diffusion rates varying within almost
200% of the mean rate. We therefore anticipate that a con-
siderable deviation from the BD model may hold true for
phylogeographic dispersal of many organisms. However, we
caution readers against the indiscriminate use of the most
flexible models, such as the lognormal-RRW, over more re-
strictive processes, such as the gamma-RRW with random
or fixed degrees of freedom, when the data do not demand
the additional variation. The theoretical properties of these
RRWs still warrant further study to determine the data sam-
pling conditions underwhich each RRW is guaranteed to re-
turn a proper posterior distribution. For example, when the
degrees of freedomare randomunder the gamma-RRW, the
diffusion increments are Student’s t distributed. Even here,
recording exactly equal sampling locations for two or more
taxa, often through rounding, generates an improper pos-
terior with multivariate Student’s t increments (Frenández
and Steel 1999). Appropriately restrictive RRWs are oneway
to hedge against such difficulties.

Inspired by developments toward relaxing molecular
clocks, we model branch variation in the phylogenetic con-
tinuous diffusion process. In the rabies epidemic example,
the lognormal-RRW appears to fit better than the gamma-
RRW, most likely because the former accommodates higher
levels of overdispersion. However, as mentioned above, the
most appropriate underlying hyperdistributionmay be data

←
phylogeny distribution and imputing the location on each branch
in each phylogeny using the precision matrix parameters for the
respective sample. The white–red color gradient informs the rel-
ative age of the dispersal pattern (older–recent). A green cir-
cle marks Pendleton County, WV, where the epizootic’s first case
was reported in 1977. The maps are based on satellite pictures
made available in Google Earth (http://earth.google.com). A dynamic
visualization of the spatiotemporal reconstruction can be explored at
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Lemey	  et	  al.,	  2009	  (Mol	  Biol	  Evol)	  

Branch	  rate	  rescaled	  (“relaxed”):	  

�b ⇠ Gamma(⌫/2, ⌫/2)

La@tude,	  longitude	  diffuse	  by	  
Brownian	  mo@on	  for	  each	  branch:	  

Xb ⇠ N
�
Xpa(b), tb�b⌃

�

Joint	  inference	  of	  gene	  tree	  
using	  relaxed	  molecular	  clock	  



Con@nuous	  models	  for	  	  
ranges	  or	  mul@ple	  individuals	  

Diffusion	  of	  set	  of	  individual	  coordinates	  
	  ???	  

	  
Diffusion	  of	  range	  as	  polygon	  
	  ???	  

	  
Hard,	  underexplored	  



Discrete	  vs.	  con@nuous	  models	  
Discrete	   Con,nuous	  

Data	   Transformed	   As	  is	  
Model	   CTMC	  

Asymmetry	  easy	  
Diffusion	  (BM)	  
Asymmetry	  hard	  

Individual/Endemic	   Yes	   Yes	  
Range	   Yes	  (scales	  poorly)	   No	  (currently)	  
Dispersal/Ex,rpa,on	   Yes	   NA	  
Cladogenesis	   Yes	   NA	  
Specia,on/Ex,nc,on	   Yes	  (for	  2-‐3	  areas)	   Yes	  (for	  individuals)	  
Spa,al	  heterogeneity	   Easy	   Hard	  
Temporal	  heterogeneity	   Easy	   Easy	  



Many	  areas	  Few	  areas	  

Complex	  cladogenic	  models	  

Plain	  cladogenic	  models	  

GeoSSE	  

LAGRANGE	  

BioGeoBEARS	  

BayArea	  

Tradeoffs	  



Lab	  

BayArea	  1.0.2	  
	  Input	  
	  Analysis	  
	  Output	  

	  
Phylowood,	  BayArea-‐Fig	  
	  Visualiza@on	  
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