Phylogeny & Biogeography

Michael Landis mlandis@berkeley.edu 11 March 2014

Range evolution

Continuous trait evolution

Admixture graphs

Biogeography

How life is distributed in space and time

Watercolor, Joanna Barnum

"Every species has come into existence coincident both in space and time with a pre-existing closely allied species." AR Wallace, 1855

Outline

Definitions and examples

Phylogenetic inference

Discrete models

Continuous models

Biogeography lab

Biogeographic patterns

Biogeographic processes

Some of the big puzzles

Where did ancestral species live?

How does range size affect speciation/extinction?

What species traits help/harm colonization?

How does geography affect range?

Biodiversity

Cercopithecidae (Primates)

Guschanski et al., 2013 (Syst Biol)

Epidemiology

Hemagglutin (HA)

H5N1 (Avian Flu)

Neuraminidase (NA)

Lemey et al., 2008 (PLoS Comp Biol)

Divergence time estimation

Archaeidae (Assassin spiders)

Wood et al., 2012 (Syst Biol)

Statistical phylogenetics

Familiar strategy:

Data matrix (homology) Time-calibrated phylogeny Transition probability of change along branches Integrate over ancestral characters

Gives us $\mathcal{L}(X; \theta, T, M)$

Photo, José Cañas

Upham & Patterson, 2012 (Mol Phylo Evol)

Species occurrence data (gbif.org, 2013)

Map of results

Your search returned 13,264 occurrences with coordinates.

Discrete presence-absence (Upham & Patterson, 2012)

Individual or range

The individuals in a taxon share a range.

	Discrete	Continuous
Individual or Endemic	occupied area	geographical point
Range	set of occupied areas	set of geographical points

Data matrix

 X_{ij} taxon *i*, character *j*

Continuous

e.g. latitude-longitude $X_i = (\phi, \lambda) = (38.54^\circ \text{N}, 121.75^\circ \text{W})$

Discrete

e.g. single area presence-absence (range) $X_i = \text{Africa} \qquad X_i = (0, 0, 1, 0, 0, 1, 1, 1)$

Models

Continuous

e.g. Brownian motion (Gaussian)

$$P(x \to y; t) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-y)^2}{2\sigma^2}\right\}$$

Discrete

e.g. continuous-time Markov chain

$$P(x \to y; t) = \left[e^{Qt}\right]_{x,y}$$

Island Model

Dispersal-only model

One area per taxon (endemic/individual) Learn favored dispersal routes

Work by: Sanmartín *et al.,* 2008 (Syst Biol) Lemey *et al.,* 2009 (PLoS Comp Biol)

Island Model

I. Sanmartín, P. van der Mark and F. Ronquist

Embedding the graph in Q

$$\begin{array}{ccccccc} A & B & C & D \\ \hline \text{General Time} \\ \text{Reversible} \\ (\mathsf{a}-\mathsf{c}) \end{array} & Q = & \begin{matrix} A \\ B \\ C \\ C \\ D \end{matrix} \begin{pmatrix} - & \pi_B r_{AB} & \pi_C r_{AC} & \pi_D r_{AD} \\ \pi_A r_{AB} & - & \pi_C r_{BC} & \pi_D r_{BD} \\ \pi_A r_{AC} & \pi_B r_{BC} & - & \pi_D r_{CD} \\ \pi_A r_{AD} & \pi_B r_{BD} & \pi_C r_{CD} & - \end{matrix} \end{pmatrix}$$

$$\begin{array}{c} \text{Stepping} \\ \text{Stone} \\ (\mathsf{b}-\mathsf{f}) \end{matrix} & Q = & \begin{matrix} A \\ B \\ C \\ D \end{matrix} \begin{pmatrix} - & \pi_B r_{AB} & 0 & 0 \\ \pi_A r_{AB} & - & \pi_C r_{BC} & 0 \\ 0 & \pi_B r_{BC} & - & \pi_D r_{CD} \\ 0 & 0 & \pi_C r_{CD} & - \end{matrix} \end{pmatrix}$$

Distribution **DNA** data 1 T_{T_1} **Shared: GTR**₁ μ_1 m_1 **Dispersal process Independent: DNA data 2** IM T_2 GTR₂ molecular process, μ_2 **m**₂ molecular speed, dispersal speed, **DNA data 3** clock tree T_3 **GTR**₃ μ_3 m_{3}

Bayes Factors (harmonic mean)

13 groups, 393 species, 954 taxa

	Ln model
Island model	likelihood
JC step	-101704.09
Equal-in	-101667.87
JC	-101649.92
Equal-in step	-101628.31
GTR	-101624.19
GTR step	-101618.94 -
	*(-101642.9)
JC step Equal-in JC Equal-in step GTR GTR step	$\begin{array}{r} -101704.09 \\ -101667.87 \\ -101649.92 \\ -101628.31 \\ -101624.19 \\ -101618.94 \\ \leftarrow \\ ^{*}(-101642.9) \end{array}$

*Model likelihood for the 'long analysis' (30 million generations, four runs); see text.

LAGRANGE

Dispersal-(Local) Extinction-Cladogenesis (DEC) Many areas per taxon (range) D,E as parameterized event classes

Work by: Ree *et al.*, 2005 (Syst Biol) Ree & Smith, 2008 (Syst Biol)

DEC event types

Dispersal & Extinction

Exponentially-distributed times between events

Rate matrix for anagenesis

$$\mathbf{Q} = \begin{bmatrix} \emptyset & 1 & 2 & 3 & 12 & 13 & 23 & 123 \\ \emptyset & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & E_1 & - & 0 & 0 & D_{12} & D_{13} & 0 & 0 \\ 2 & E_2 & 0 & - & 0 & D_{21} & 0 & D_{23} & 0 \\ 3 & E_3 & 0 & 0 & - & 0 & D_{31} & D_{32} & 0 \\ 12 & 0 & E_2 & E_1 & 0 & - & 0 & 0 & D_{13} + D_{23} \\ 13 & 0 & E_3 & 0 & E_1 & 0 & - & 0 & D_{12} + D_{32} \\ 23 & 0 & 0 & E_3 & E_2 & 0 & 0 & - & D_{21} + D_{31} \\ 123 & 0 & 0 & 0 & 0 & E_3 & E_2 & E_1 & - \end{bmatrix}$$

 $\mathbf{P}_{ij}(t) = \left[\exp\left\{\mathbf{Q}t\right\}\right]_{ij}$

Cladogenesis

DEC likelihood

 $p(X_1', X_2' \mid X_A) \times p(X_1 \mid X_1', t_1, \theta)$ $\times p(X_2 \mid X_2', t_2, \theta)$

MLE inference vs truth

MLE range reconstructions

Unconstrained (GTR)

Psychotria mariniana

Stratified (time-dependent GTR)

BioGeoBEARS

Generalized DEC model Many areas per taxon (range) Seven parameterized event classes

Work by: Matzke, 2013 (Frontiers Biogeo)

Generalized DEC model

BiogeoBEARS likelihood

Speciation hidden by extinction

Geographic State Speciation Extinction (GeoSSE)

DEC model

Joint birth-death process & range evolution

Accounts for "hidden" speciation

Range evolution, speciation, extinction intertwined

Work by: Goldberg *et al.,* 2011 (Syst. Biol.) Goldberg & Igić, 2012 (Evolution)

	Parameter	Areas	Event
Speciation	s_A	А	New lineage in area A
	s_B	В	New lineage in area B
	s_{AB}	AB	New lineage in area A or B
Dispersal	d_A, d_B	A or B	This lineage gains an area
Extinction	x_A, x_B	AB	This lineage loses an area
		A or B	This lineage goes extinct

GeoSSE likelihood

Likelihood of tree and character states

$$\begin{aligned} \frac{dD_{NA}}{dt} &= -(s_A + d_A + x_A)D_{NA}(t) + d_A D_{NAB}(t) \\ &+ 2s_A D_{NA}(t)E_A(t), \\ \frac{dD_{NB}}{dt} &= -(s_B + d_B + x_B)D_{NB}(t) + d_B D_{NAB}(t) \\ &+ 2s_B D_{NB}(t)E_B(t), \\ \frac{dD_{NAB}}{dt} &= -(s_A + s_B + s_{AB} + x_A + x_B)D_{NAB}(t) \\ &+ x_A D_{NB}(t) + x_B D_{NA}(t) \\ &+ s_A [E_A(t)D_{NAB}(t) + E_{AB}(t)D_{NA}(t)] \\ &+ s_B [E_B(t)D_{NAB}(t) + E_{AB}(t)D_{NA}(t)] \\ &+ s_A B [E_A(t)D_{NB}(t) + E_B(t)D_{NA}(t)], \end{aligned}$$

Likelihood of extinction

$$\frac{dE_A}{dt} = -(s_A + d_A + x_A)E_A(t) + x_A + d_A E_{AB}(t) + s_A E_A(t)^2,$$
(3a)

$$\frac{dE_B}{dt} = -(s_B + d_B + x_B)E_B(t) + x_B + d_B E_{AB}(t) + s_B E_B(t)^2,$$
(3b)

$$\frac{dE_{AB}}{dt} = -(s_A + s_B + s_{AB} + x_A + x_B)E_{AB}(t) + x_A E_B(t) + x_B E_A(t) + s_A E_{AB}(t)E_A(t) + s_B E_{AB}(t)E_B(t) + s_{AB} E_A(t)E_B(t).$$
(3c)

Likelihood of "observed" speciation

MLE inference vs truth

BayArea

Dispersal-Extirpation model Distance effects as a free parameter Scales for many areas

Work by: Landis *et al.*, 2013 (Syst Biol)

Intractable for more than ten areas

How to infer large Q?

Inspired by Robinson *et al.*, 2003 (*Mol Biol Evol*)

Key concepts

- 1. Propose biogeographic histories,H
- 2. Compute likelihood, $\mathcal{L}_{ heta,H}$
- 3. Approximate $P(\theta, H \mid D)$ using Markov chain Monte Carlo (MCMC)

1. Propose biogeographic histories,H

2. Compute likelihood, $\mathcal{L}_{\theta,H}$

Range evolution events from range $j \rightarrow i$:

sum of rates leaving jprob any event at time tprob next event is $j \to i$

 $\mathcal{L}_{\theta,H}$ = product of event types & times over tree

3. Approximate $P(\theta, H \mid D)$ using MCMC

Distance-dependent dispersal model

Infer distance effect parameter

Where is next dispersal event given current range?

Distance dependent rate matrix

$$R_{Y_i,Y_j}^{(a)} = \begin{cases} \lambda_0 & \text{if } Y_{j,a} = 0\\ \lambda_1 \eta(Y_i, Y_j, a, \beta) & \text{if } Y_{j,a} = 1\\ 0 & \text{if } Y_i \text{ and } Y_j \text{ differ at more than one area}\\ 0 & \text{if } Y_j = (0, 0, \dots, 0) \end{cases}$$

ExtirpationUniform at randomDispersalModified by distanceExtinctionForbidden

Distance-dependent rate modifier

Bayesian inference vs truth

Posterior of ancestral ranges

East of Wallace's Line West of Wallace's Line

1-200
Post
1/ 2 2
1 Aller

Rhododendron goodenoughii

Continuous models

Brownian motion Each taxon is an individual sample Epidemiology models

Work by: Lemmon & Lemmon, 2008 (Syst Biol) Lemey *et al.*, 2010 (Mol Biol Evol)

2D Brownian motion

Relaxed random walk

Joint inference of gene tree using relaxed molecular clock

Latitude, longitude diffuse by Brownian motion for each branch: $X_b \sim N\left(X_{\mathrm{pa}(b)}, t_b\phi_b\Sigma\right)$

Branch rate rescaled ("relaxed"): $\phi_b \sim \text{Gamma}(\nu/2, \nu/2)$

Continuous models for ranges or multiple individuals Diffusion of set of individual coordinates ???

Diffusion of range as polygon ???

Hard, underexplored

Discrete vs. continuous models

	Discrete	Continuous
Data	Transformed	As is
Model	CTMC Asymmetry easy	Diffusion (BM) Asymmetry hard
Individual/Endemic	Yes	Yes
Range	Yes (scales poorly)	No (currently)
Dispersal/Extirpation	Yes	NA
Cladogenesis	Yes	NA
Speciation/Extinction	Yes (for 2-3 areas)	Yes (for individuals)
Spatial heterogeneity	Easy	Hard
Temporal heterogeneity	Easy	Easy

Lab

BayArea 1.0.2 Input Analysis Output

Phylowood, BayArea-Fig Visualization

Papers

Bielejec, F., A. Rambaut, M. A. Suchard, and P. Lemey. 2011. Spread: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912.

Goldberg, E. E., L. T. Lancaster, and R. H. Ree. 2011. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Systematic Biology 60:451–465.

Lamm, K. S. and B. D. Redelings. 2009. Reconstructing ancestral ranges in historical biogeography: properties and prospects. Journal of Systematics and Evolution 47:369–382.

Landis, M. J. and T. Bedford. 2014. Phylowood: interactive web-based animations of biogeographic and phylogeographic histories. Bioinformatics 30:123–124.

Landis, M. J., N. J. Matzke, B. R. Moore, and J. P. Huelsenbeck. 2013. Bayesian analysis of biogeography when the number of areas is large. Systematic Biology 62:789–804.

Lemey, P., A. Rambaut, A. J. Drummond, and M. A. Suchard. 2009. Bayesian phylogeography finds its roots. PLoS Computational Biology 5:e1000520.

Lemey, P., A. Rambaut, J. J. Welch, and M. A. Suchard. 2010. Phylogeography takes a relaxed random walk incontinuous space and time. Molecular Biology and Evolution 27:1877–1885.

Lemmon, A. A. and E. M. Lemmon. 2008. A likelihood framework for estimating phylogeographic history on a continuous landscape. Systematic Biology 57:544–561.

Matzke, N. J. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5.

Ree, R. H., B. R. Moore, C. O. Webb, and M. J. Donoghue. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59:2299–2311.

Ree, R. H. and I. Sanmartin. 2009. Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography 36:1211–1220.

Ree, R. H. and S. A. Smith. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology 57:4–14.

Ronquist, F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46:195–203.

Ronquist, F. and I. Sanmartin. 2011. Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution, and Systematics 42:441–464.

Sanmartin, I. and F. Ronquist. 2004. Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology 53:216–243.

Webb, C. O. and R. H. Ree. 2012. Historical biogeography inference in Malesia. Pages 191–215 in Biotic evolution and environmental change in Southeast Asia (D. Gower, K. Johnson, J. Richardson, B. Rosen, L. Ruber, and S. Williams, eds.) Cambridge University Press.

Software

BayArea	https://code.google.com/p/bayarea/
BEAST	http://beast.bio.ed.ac.uk/Main_Page
BioGeoBEARS	<u>http://cran.r-project.org/web/packages/</u> <u>BioGeoBEARS/index.html</u>
GeoSSE	http://www.zoology.ubc.ca/prog/diversitree/
LAGRANGE	https://code.google.com/p/lagrange/
SHIBA	http://phylodiversity.net/shiba/