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Testing hypotheses of state-
dependent diversification in
continuous traits

* Does changing from terrestrial to arboreal
foraging lead to changes in hind limb and
tail morphology in pigeons and doves?
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(Lapiedra et al. 2013, Proc. Roy. Soc. 280)



Testing hypotheses of state-
dependent diversification in
continuous traits

* Do changes in habitat use lead to changes
iIn body size and shape in monitor lizards?

(Collar et al. 2011 Evolution 65(9), 2664-2680 )



Testing hypotheses of state-
dependent diversification in
continuous traits

* Does the loss of heterostyly lead to
changes in floral morphology in primroses ?

de Vos et al. 2014 Evolution online early
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Testing hypotheses of state-
dependent diversification in
continuous traits

Two main ways a change in behaviour/region/
morphology/ecology can promote an
evolutionary change in continuous traits:

1. Create the opportunity for further
diversification through removal of previous

constraints or allowing new adaptation.

2. Pull the population towards a new optimal
phenotype.



Ornstein-Uhlenbeck (OU model)

Strength of selection
Is proportional to distance of

current trait value from optimum
A
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Pull towards optima
(Strength of selection)

Brownian motion
(Brownian motion rate ¢?)



OU model collapses to Brownian
motion when o =0
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Brownian motion dX = odB,
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At a point Iin time :

A character can
Increase, decrease or
stay the same

 Direction and
magnitude of change
Is iIndependent of
current or past
character states

 Constant rate

Brownian motion

Learn to simulate Brownian motion: BM&OUsimulations.R
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Ornstein-Uhlenbeck (OU model)

Optimal trait value \ }

Pull towards optima
(Strength of selection)

Brownian motion
(Brownian motion rate ¢?)
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Trait Value
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Trait Value
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Variance In trait due to o, o and time

So are o and a identifiable? As a decrease
in rate (02) and an increase in o both reduce
variance of the trait at the tips of the tree.



Variance In trait due to o, o and time

So are o and a identifiable? As a decrease
in rate (0%) and an increase in o both reduce

variance of the trait at the tips of the tree.

* Increase in o will erode the
phylogenetic pattern of the trait but a
decrease in o will not however there
will be cases various estimates o of
and a are equally likely.



Testing hypotheses of state-
dependent diversification in
continuous traits

Allow o, 6 and o to vary depending on state
of discrete trait
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Testing hypotheses of state-
dependent diversification in

continuous traits

Model-fitting or model-averaging framework

Model 0 o o

BM1 - Universal -

OU1 Universal Universal Universal
BMS - State-dependent -

OUM State-dependent Universal Universal
OUMA State-dependent Universal State-dependent
OuMVv State-dependent State-dependent Universal
OUMVA State-dependent State-dependent State-dependent




OUwie package in R
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MODELING STABILIZING SELECTION:
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Comparative methods used to study patterns of evolutionary change in a continuous trait on a phylogeny range from Brownian
motion processes to models where the trait is assumed to evolve according to an Ornstein—Uhlenbeck (OU) process. Although
these models have proved useful in a variety of contexts, they still do not cover all the scenarios biologists want to examine. For
models based on the OU process, model complexity is restricted in current implementations by assuming that the rate of stochastic
motion and the strength of selection do not vary among selective regimes. Here, we expand the OU model of adaptive evolution
to include models that variously relax the assumption of a constant rate and strength of selection. In its most general form, the
methods described here can assign each selective regime a separate trait optimum, a rate of stochastic motion parameter, and a
parameter for the strength of selection. We use simulations to show that our models can detect meaningful differences in the
evolutionary process, especially with larger sample sizes. We also illustrate our method using an empirical example of genome

size evolution within a large flowering plant clade.



Testing hypotheses of state-
dependent diversification in
continuous traits

Two main ways a change in behaviour/region/morphology/
ecology can promote an evolutionary change in
continuous traits:

1. Create the opportunity for further diversification
through removal of previous constraints or allowing
new adaptation. BM model fits best with higher o

In new state or multi-optima OU with lower a in
new state.

2. Pull the population towards a new optimal
phenotype. Multi-optima OU model fits best with o
> 0.



Testing hypotheses of state-
dependent diversification in
continuous traits

1. Continuous trait measurements

2. Tree(s) with meaningful branch
lengths
Time or relative time

3. Discrete character(s)
4. Model of evolution — flexible OU
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Two centers of marsupial Diversity

South America Australasia
~ 70 extant species ~ 200 extant species
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Hypotheses to test in OUwie

1. American marsupials exhibit less variable

body sizes than Australian marsupials.

Predict: under a BM model lower rates (024) or under
OU stronger pulls towards an optimum (o) in South
America )

2. Diet (Herbivory, Carnivory, Omnivory)
influences body size evolution — highest

optimal mass in herbivores. Predict: best-
fitting model are multi-optima OU models.

Learn how to test these hypotheses using: OuwieTutorial.R



Caveats

Really important to make sure the information
within your dataset is sufficient to distinguish
between the models and estimate parameters.
Do you have enough species in your tree and
within each state?

 Check the likelihood surface and standard
error estimates.

* Run forward simulations/parametric
bootstrapplng (e.g. see Boettiger et al. 2012, Evolution 66(7),
2240). OUwie has a simulation function that
aIIows you do this relatively simply. These
can also help generate an idea of model
plausibility (see Jeremy Brown's lecture).




Caveats

MACROEVOLUTIONARY EXPERIMENTAL
DESIGN

Either pick your questions appropriate to
your clade (i.e. that you have the power to answer)
or pick your clade to answer your
question of interest.




Other things to consider

Computational time

To run an analysis on a reasonably sized
dataset with multiple stochastic maps per tree
topology can take many days. Consider:

* Access to high performance computing

— Many universities have a cluster

— Free online access to clusters for particular analyses/taxa
e.g. iplant discovery environment

— Writing grants to get access to NSF xsede (not available to
grad students ®)

— Pay to use cloud computing e.g. Amazon EC2

« Batch processing your analyses — running
each tree/model on a different CPU.



Additional methods
NO a priori hypotheses needed

1. ldentifying BM rate shifts

— Eastman et al. 2011: RIMCMC approach for fitting
multiple shifts in rate class across the tree. geiger
package in R (formally auteur)

— Revell et al. 2012: MCMC approach for fitting a single
rate shift to a tree. phytools package in R.

— Thomas & Freckleton 2011: Stepwise AIC approach
using Maximum Likelihood for identifying branches
with (similar to Medusa for lineage diversification).
MotMot package in R.

— Vendetti et al. 2011: RIMCMC with GLS approach for
fitting multiple shifts in rate across the tree allows OU
and time-dependent models ?



Additional methods
NO a priori hypotheses needed

1. ldentifying BM rate shifts
— geiger package in R (formally auteur)
— phytools package in R.
— MotMot package in R.

2. Identifying optima shifts
— Ingram & Mahler 2013: Stepwise AlIC approach using
Maximum Likelihood for identifying branches with
optima shifts. surface package in R



