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about me

I’'m mainly interested in statistical and computational
aspects of phylogenetic inference:

e models of sequence evolution.

e multiple sequence alignment.

e improving integration of fossil information into
phylogenies.

e “phyloinformatics” and consolidating phylogenetic
information across the tree of life



Inputs: filter | weight input trees

Published phylogenies synthesize into single data
- structure
Taxonomies

* process feedback
* input new data sets

complete tree of life
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Phylogenetics “State of the union”

Main points:

O It’s Joe’s world, we just work here.

® phylogeny vs coalescent vs “gene family” tree ...
e terms matters (somewhat)
e we probably should not be factoring these distinctions

into different boxes
® Making convincing, rigorous statistical statements in
phylogenetics is (still) tough.

then a bit of advice.



During the 1970’s and 80’s Felsenstein provided a firm
foundation:

e pruning algorithm (makes likelihood feasible),

e models of sequence evolution,

e non-parametric bootstrapping for tree inference (1985),
e independent contrasts (1985),

e demographic inference from the coalescent (collab.
with J. Yamato, M. Kuhner, and P. Beerli)

e indel model (Thorne, Kishino, Felsenstein 1991, 1992)



Joe’s world:

Likelihood-based inference:
e A model with parameter values, 6, predicts what type
of data we should see.

e We assess fit of the model to data (X) by the
likelihood of the model:

P(X |0,T)

e The original set of phylogenetic models was very
simple. Now they are bewilderingly varied and
complex.

e Most of us were taught “traditional” statistics that
focuses on test statistics (not X), and null
distributions (not 0).

e Note that Joe jointly infers 6 and T.



“Crust of the earth is a vast museum” -
C. Darwin

The history of phylogenetics is a vast museum of
abandoned tests/statistics that were not formulated as
parameters in a model:

e consistency index,
e retention index,

e permutation tail probability tests

g1 statistics for the distribution of tree scores



The “meta-lesson” I take from the
Felsenstein revolution in systematics

Model-based approaches seem cartoonishly simplistic at
first, but. ..

e they are extensible,
e they are transparent,
e using all of the data — maximizing statistical power,

e it has taken decades for these methods to be
implemented efficiently, but in the long run they seem
to win out



Common practice in the 1990’s. . .

e assume that the gene tree = species tree,

e treat all sites as independent and identically
distributed,

¢ infer unrooted trees; root by outgroup if rooted trees
are needed

e data collection — alignment — tree estimation —
“post-tree analyses”



In the past 15-20 years

©® Massive computational improvements (RAxML,
PhyML, FastTree, GARLI, MrBayes, BEAST. . .)

® Better treatment of the difference between a gene tree
estimate and a species tree

@® Statistical phylogeography

@ Much richer models of sequence evolution along a gene
tree

® Better methods for estimating the timing of events

® Improved modeling of diversification rates

@ Much improved analysis of character evolution on a
tree (stochastic character mapping/ robust
counting. . .)

© genomics



Research foci of the past 15-20 years and
this workshop
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Earlier I said that practice in the 1990’s
was. . .

e assume that the gene tree = species tree,

e treat all sites as independent and identically
distributed,

e infer unrooted trees; root by outgroup if rooted trees
are needed

e data collection — alignment — tree estimation —
“post-tree analyses”
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Figure 2: The usage of the term ‘ortholog’ in the
title or abstract of scientific publications. The usage
data were from PubMed (http:/jwww.ncbi.nlm.nih
.gov/pubmed)).

Figure 2 from Atchley (2011) obituary for Walter Fitch
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Figure 4 from Avise et al. (1990)



“one is provoked to reconsider precisely what is phylogeny.
Perhaps it is misleading to view some gene trees as agreeing
and other gene trees as disagreeing with the species tree;
rather, all of the gene trees are part of the species tree,
which can be visualized like a fuzzy statistical distribution,
a cloud of gene histories. Alternatively, phylogeny might be
(and has been) viewed not as a history of what happened,
genetically, but as a history of what could have happened,
i.e., a history of changes in the probabilities of inter-
breeding.”

from the abstract of Wayne Maddison’s classic paper

Maddison (1997) (emphasis added)




Let’s vote!l Which perspective is most
helptul?

©® Phylogeny is the sum of gene trees,
® Phylogeny is “a history of what could have happened”

® Phylogeny is the “modal” (most common) set of gene
tree relationships



There is no right answer to a“which is more helpful”
question.

But I vote for option #2. Instead of:
P(X | T)

where X is the data, and 7' is the phylogeny,
“a history of changes in the probabilities of inter-breeding’
implies:

)

P(X [ G)P(G | T)

where G is a gene tree.



Genealogies within a population
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Genealogies within a population

Present

. v‘

Past
Biparental inheritance would make the picture messier, but the
genealogy would still form a tree (if there is no recombination).



terminology: genealogical trees within
population or species trees

It is tempting to refer to the tips of these gene trees as
alleles or haplotypes.

e allele — an alternative form a gene.
e haplotype — a linked set of alleles

But both of these terms require a differences in sequence.

The gene trees that we draw depict genealogical
relationships — regardless of whether or not nucleotide
differences distinguish the “gene copies” at the tips of the
tree.









A “gene tree” within a species tree
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“deep coalescence”
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terminology: genealogical trees within
population or species trees

e coalescence — merging of the genealogy of multiple
gene copies into their common ancestor. “Merging”
only makes sense when viewed backwards in time.

e “deep coalescence” or “incomplete lineage sorting”
refer to the failure of gene copies to coalesce within the
duration of the species — the lineages coalesce in an
ancestral species



Coalescents (“gene trees”) in species trees

Species tree inference accounting for coalescence
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Figure 2 from Heled and Drummond (2010)



Coalescents (“gene trees”) in species trees

@ gene tree divergences are older than the species tree
divergence;

® the difference can be big if population sizes are large

But, if you have a tree of 3 species, the most common
coalescent topology agrees with the species tree. ..



Anomalous Gene Trees: most common
coalescent topology # species tree

Y Figure 2 from Rosenberg (2013 MBE)



Anomalous Gene Trees: most common
coalescent topology # species tree

Figure 1 from Rosenberg (2013 MBE)
demonstrating result of

Degnan+Rosenberg (2006)
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Yoder et al. (2013) summary

e Over 87,000 variable sites (aligned to the reference
genome of M. trunculata),

e The dataset exceeds to range of the inferring species
trees using *BEAST

e lots of deep coalescence, but many previously difficult
relationships were resolved,

e randomly sampling 5000 of the variable sites does not
yield the full dataset’s tree!



“gene family tree”
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Joint estimation of gene duplication, loss,
and species trees using PHYLDOG
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Figure 2A from Boussau et al. (2013)



Very Rapid Turnover of A-superfamily
conotoxin genes in Conus
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Figure 1 from Chang and Duda (2012)



Gene Duplication on a fixed species tree
A

p=1/2N

Locus 1 Locus 2

Figure 2A from Rasmussen and Kellis (2012)



Instead of:
P(X | T)

where X is the data, and 7T is the phylogeny,
a separation into:

P(X|G)P(GIL)P(L|T)

where G is a gene tree, L is a “locus tree” (Rasmussen and
Kellis, 2012).



Mapping gene/locus/species trees

A DLCoal Process

multilocus coal process dup-loss process

T"—TL
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Figure 3A from Rasmussen and Kellis (2012)



Joint estimation of gene duplication, loss,

and coalescence with DLCoalRecon
A

p=1/2N

Locus 1 Locus 2

Figure 2A from Rasmussen and Kellis (2012)



Future: improved integration of DL
models and coalescence
B
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Figure 2B from Rasmussen and Kellis (2012)



Modeling Allopolyploidization
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Example of inferring allopolyploidization
in Silene
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Figure 7 from Jones et al. (2013)



AN EVALUATION OF THE HYBRID SPECIATION
HYPOTHESIS FOR XIPHOPHORUS CLEMENCIAE
BASED ON WHOLE GENOME SEQUENCES

Molly Schumer,’2 Rongfeng Cui,* Bastien Boussau,>® Ronald Walter,” Gil Rosenthal,>* and
Peter Andolfatto™?

Schumer et al. (2013) use synteny information and size
of introgressed blocks to reject hybridization in favor of
admixture.

Tools: PhyML_multi (Boussau et al., 2009) and
windows of seq analyzed with AU test.



Lateral Gene Transfer
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Lateral Gene Transfer

a) evolutionary scenario
along complete phylogeny

They 423 single-copy genes

unrepresented
speciations

represented
speciation

in > 34 of 36 cyanobacteria

They estimate:

gene
duplication

2.56 losses/family

extinct or unsampled \
. el \
gene lineages S \ gene

2.15 transfers/family

~ 28% of transfers between

non-overlapping branches

genes observed in sampled species

Figure 3 from Szollési et al. (2013)



Separating gene and species trees

X = sequence data
G = a gene tree
T = a species tree

P(X |T) = ZIPX|G (G| T)

If the data strongly prefer one gene tree G, then

P(X|T) =~ B(X|GPG|T)

x PG| T)

Q



Unfortunately, nature is not
cooperating. . .

=

Fig. 4 from Boussau et al. (2013)
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o “We also show that the common practice of
disregarding reconcilability in gene tree inference
overestimates the number of LGT and duplication
events.” from Sjostrand et al “A Bayesian Method for
Analyzing Lateral Gene Transfer” Syst. Biol. 2014



Separating gene and species tree
estimation

Jointly estimate gene trees and species tree — less
incongruence.
This implies that we need:

e to “integrate out” uncertainty in gene trees.

e software implementing both

e state-of-the-art substitution models and
e gene-tree/species-tree reconciliation.



Part 2 summary

e Several research groups are tackling the disentangling
different pieces of the:

coalescent history,

locus history,

hybridization history,

lateral gene transfer history

recombination history

e These problems overlap.

e [t seems optimistic to think that we’ll be able to
jointly infer all of these processes in one piece of
software (any time soon)



Part 3. statistics on trees are tough

It is very difficult to create a confidence set of trees

e Very nice adjusted bootstrap proportion work by
Susko focused on single branch support,

AU and SH tests (Shimodaira) require specification of
a candidated set of trees

Susko (2014) just corrected the null distribution for
the KH test



What it we just want to test for
correlated evolution between a couple of
characters?

The standard approach:
©® Calculate a test statistic of correlation, Z(X)

® Consider the null distribution: values of Z(X) given no
correlated evolution.

® Calculate P =P(z > Z(X) | Hy)
@ if P < 0.05, reject the null



Testing for correlated evolution between
a latitude and mass using data from 8
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What if we don’t know the tree?

The evidence for correlation depends on 7T, but we don’t
know what T is correct.



What if we don’t know the tree?

We could integrate out the tree:

P=P(z> Z(X) | Hy) = /IP’(z > Z(X) | T)P(T | X, Ho)dT



What if we don’t know the tree?

We could integrate out the tree:
p=P(z>Z(X) | Hy) = /IP(Z > Z(X) | T)P(T | X, Hy)dT

Unfortunately, this is not a valid p value.

In frequentist statistics, the p value is suppose to be the
largest p attainable under the null (this is called the “least
favorable condition” for the test)



Berger and Boos. 1994. “P Values Maximized Over a
Confidence Set for the Nuisance Parameter.” Journal of the
American Statistical Association. 89(427). 1012-1016.

To calcuate a P value, when there is an unknown, nuisance
parameter, 6:

©® Calculate a (1 — ) confidence set for 6 (e.g for a 99%
confidence set, 5 = 0.01)

® Calculate a P value for every 6 in the confidence set:
call this vector p(0)

® P = max[p(f)] + /



In phylogenetics, if we used Berger and Boos’ method, we
would need to:
©® Get a 99% confidence set. The AU test could help, but
this could be a very large set trees

® Conduct the comparative method assuming each of the
trees, and store the highest P value

® Report 0.01 + the highest P value
We tend to simply perform the comparative method over a

collection of trees (from bootstrapping or MCMC) and
report a mean.

It is not clear (to me) whether we should be using the
Berger and Boos method, instead.



My clashing main points

@ Felsenstein showed us the way: conduct full, likelihood
based inference of models.

® We are starting to be able to deal with the intricate
connections between levels of inference (gene tree,
locus tree, species tree. . .), but it is hard to do this
simultaneously.

® We don’t even have access to easy frequentist
probabilities



The unstated, but vital point about the
“state of the phylogenetics union”

It is a really cool time to be working in phylogenetics.

® Thanks to incredible advances in hardware and
software, very rich analyses are now possible

® Phylogenetics continues to be a fertile meeting place
for biologists, statisticians, mathematicians, and
computer scientists.

® Even as our image of the “tree” of life changes,
genealogical relationships remain central to analyzing
comparative data.



A bit of (unsolicited) advice . ..

Think about making a convincing arguments rather than
just running the recommended tests/analyses.



“Politicians use statistics in the same way that a drunk
uses lamp-posts — for support rather than illumination.”
Andrew Lang

e We scientists should be using statistics for our own
illuminaton,



“Politicians use statistics in the same way that a drunk

uses lamp-posts — for support rather than illumination.”
Andrew Lang

e We should be using statistics for our own illuminaton,
but we should also think of statistics as a
communication tool.

e Don’t perform only the analyses that would convince
you, make sure that your claims are convincing to a
wide range of viewpoints.



The (relatively few) types of arguments
we make with statistics

©® These data would be unlikely if the null were true (the
p-value argument).
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® If we used this procedure a lot, we’d bracket the true
value 95% of the time (the confidence interval)



The (relatively few) types of arguments
we make with statistics

©® These data would be unlikely if the null were true (the
p-value argument).

® If we used this procedure a lot, we’d bracket the true
value 95% of the time (the confidence interval).

® If P(A) describes our beliefs about plausible models
before seeing the data, after we see the data our beliefs
should be P(0|X). The Bayesian posterior probability.



The (relatively few) types of arguments
we make with statistics

©® These data would be unlikely if the null were true (the
p-value argument),

® If we used this procedure a lot, we’d bracket the true
value 95% of the time (the confidence interval)

@® If P(0) describes our beliefs about plausible models
before seeing the data, after we see the data our beliefs
should be P(0|X). The Bayesian posterior probability.

@ If we use this threshold for evidence, we would expect

5% of our positives to be false positives (the false
discovery rate)



The p-value argument

These data would be unlikely if the null were true.
Pros:

@ Very conservative. Gives the null the benefit of the
doubt by focusing on the “least favorable” conditions.

® If you don’t reject the null, then your conclusions
resistant to the addition of more models.

Cons:
©® Can be surprisingly difficult to correctly calculate p
® Does not give you inference to the best model.

® Failure to reject null often caused by lack of data.



The confidence interval argument

Pros:
® Somewhat intuitive.
® ldentifies a plausible set of answers.
® Not dependent on prior knowledge of parameters.
Cons:
® Can be surprisingly difficult to correctly calculate
® Ignores prior information

® Does not fully condition on the data you observed.



The Bayesian posterior probability
argument. P(0]X).

Pros:

@ Very intuitive statement of the best range of
parameters

® The only coherent statement of knowledge that uses all
of the information in the data

Cons:
® Unconvincing to people with different priors

® [ts unclear what would happen if you consider another
model

® Relies on MCMC (which is cool, but dangerous)



The False discovery rate argument.

Pros:

©® Nice mixture of frequentist and emprical Bayesian
behavior
® Check out Nicolas Lartillot’s blog
http://bayesiancook.blogspot.com/ for convincing
arguments that evolutionary genomics has an empirical
Bayesian future.
Cons:

® You're not going to see a lot of software in
phylogenetics that spits out FDR values.


http://bayesiancook.blogspot.com/

For each analysis/test that we talk about in the course:
©® make sure that you understand the “signal”:
o sketch out cases of the tree or data that would look
uninteresting,
e sketch what interesting data would look like

® What confounding factors could lead to similiar signal?

e c.g. analyses of diversification times and rates depend
crucially on branch lengths.

e models that are too simplistic distort branch lengths
(mainly they underestimate deep and long branches)



For each analysis/test that we talk about in the course:
©® make sure that you understand the “signal”:

e sketch out cases of the tree or data that would look
uninteresting,
e sketch what interesting data would look like

® What confounding factors could lead to similiar signal?

® If a confounding factor is not included in your analysis,
consider doing some simulations to assess whether your
result could be an artifact.

©® What kind of statistical arguments (p value, CI,
Bayesian, FDR) would be most convincing to a
skeptic?
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Better methods for estimating the timing
of events

e richer models for relaxing the molecular clock
e use of fossil taxa as tips

e Tracy will cover divergence time estimation



Much richer models of sequence evolution

e Model-averaging during tree inference (MrBayes 3.2;
RBS-add-on to BEAST; CAT model in PhyloBayes)

e Empirically-derived matrices. See: Zoller and
Schneider (2013) for a nice semi-empirical approach
and Dunn et al. (2013) for a model that groups sites
based on physiochemical properties

e Models that change over the tree



Analysis of mutational mapping to
identify model changepoints

Mantidactylus grandidieri

0.08 0.044 Mantidactylus cf.
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0.044 Guibemantis tornieri
[ Tsingymantis antitra
Laliostoma labrosum

Aglyptodactylus madagascariensis
0.0‘ 4 {Boophis mad iensi
N .
“Join” model

“Free” model 1

Figure 7 form Dutheil et al. (2012)



Improved modeling of diversification rates

e Better ways of dealing with estimating speciation and
extinction from trees with unsampled taxa (see the
work of Tanja Stadler)

e Models of characters that affect diversification rates
(BiSSE )

e Brian will cover analyses of diversification rates



Stochastic character mapping/ robust
counting

e Better assessment of uncertainty than an ancestral
character state reconstruction,

e mappings easier to analyze with other character data,

e inferring mappings under an simple model is often
quite robust.



