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1. Insights from studies of character evolution


2. Requirements for studies of character evolution


3. Data exploration


•  Visualizing trait data on phylogenetic trees (R tutorial)


4. Trait evolution


• ML and Bayesian methods for estimating ancestral states, rates, and 
models of evolution (R & BayesTraits tutorials)


• Stochastic character mapping (R & SIMMAP tutorials)


• Correlations among characters (BayesTraits tutorial)
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Character evolution road map

	 Discrete Continuous

Trait evolution: ancestral 
reconstruction, patterns of trait, 

rates of trait evolution, 
biogeographic analyses

Glor: Tuesday

Landis: Tuesday

Mahler: Wednesday

Wainwright: Thursday


Price: Thursday 

Trait interactions:  trait 
correlations, impact of traits on 

one another

Glor: Tuesday

Price: Thursday

Mahler: Wednesday

Wainwright: Thursday


Price: Thursday

Impact of traits on taxonomic 
diversification Moore: Thursday
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• Reconstruction of ancestral traits
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• Trait evolution

• Reconstruction of ancestral traits


• Behavior



What Questions Can You Ask?

• Testing trait correlation


• Adaptation and natural selection

What happens when we replay the tape of evolution?
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Gamble et al. 2012. PLoS ONE

• Trait evolution

• Patterns of trait evolution

Insight From Studies of Character Evolution
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• Impact of traits on taxonomic diversification
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Insight From Studies of Character Evolution



Trophic evolution and mammal diversification



Coral reefs and fish diversification

Price et al. 2011. Ecology Letters



Coral reefs and fish diversification

Price et al. 2011. Ecology Letters



Ecological opportunity and anole diversification
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1. Insights from studies of character evolution


2. Requirements for studies of character evolution 

3. Data exploration


•  Visualizing trait data on phylogenetic trees (R tutorial)


4. Trait evolution


• ML and Bayesian methods for estimating ancestral states, rates, and 
models of evolution (R & BayesTraits tutorials)


• Stochastic character mapping (R & SIMMAP tutorials)


• Correlations among characters (BayesTraits tutorial)



Why is it Necessary to Use the Phylogeny?



Why is it Necessary to Use the Phylogeny?



Phylogenetic Signal

• “tendency for related species to resemble each other more than they resemble 
species drawn at random from the [phylogenetic] tree” - Blomberg & Garland 2002


• “Phylogenetic signal is a measure of the statistical dependence among species’ trait 
values due to their phylogenetic relationships.” - Revell et al. 2008
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Phylogenetic Signal

• “tendency for related species to resemble each other more than they resemble 
species drawn at random from the [phylogenetic] tree” - Blomberg & Garland 2002


• “Phylogenetic signal is a measure of the statistical dependence among species’ trait 
values due to their phylogenetic relationships.” - Revell et al. 2008


• On the one hand...


• Phylogenetic signal suggests that phylogenetic analyses are necessary.


• On the other hand...


• Lack of phylogenetic signal means that the history of traits cannot be inferred.



What Do You Need to Investigate Trait Evolution?

1. Phylogeny for the taxa of interest


2. Trait values for the taxa of interest


3. A model to describe trait evolution
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Phylogenetic Trees for Comparative Analyses

• Preferably trees with meaningful branch lengths and sets of trees that 
account for uncertainty in branch length and topology.

1

2

5

6

3

4

3

4

5

6

2

1

2

3

4

5

6

1

1

2

5

6

4

3

1

3

4

2

5

6

1

5

6

2

3

4



What Do You Need to Investigate Trait Evolution?

1. Phylogeny for the taxa of interest


2.Trait values for the taxa of interest



Types of Character Data

• Discretely-coded traits


• Intrinsically discrete traits



Types of Character Data

• Discretely-coded traits


• Intrinsically discrete traits

Wings No wings

Aquatic Terrestrial



Types of Character Data

• Discretely-coded traits


• Discretize continuous traits

Yang 1994



Types of Character Data

• Discretely-coded traits


• Discretize continuous traits

Brischoux et al. 2010 Pupil shape in snakes
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Dollo’s Law and snake reproduction

Viviparous Oviparous
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Dollo’s Law and snake reproduction



Visualizing body size in mammals



Visualizing morphological data from PCA



Egg laying strategies in darter fish

Kelly et al. 2012. J. Evol. Biology



Egg laying strategies in darter fish

Kelly et al. 2012. J. Evol. Biology



Diet in mammals

Price et al. 2012. PNAS





Lunch break
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What Do You Need to Investigate Trait Evolution?

1. Phylogeny for the taxa of interest


2. Trait values for the taxa of interest


3. A model to describe trait evolution



Parsimony

Maximum Parsimony

Granivore

Insectivore

Folivore

2 Changes

• The Fitch-Wagner down-pass/up-pass method



Alternative Parsimony Models

• Unordered (Fitch parsimony)


• Ordered (Wagner parsimony)


• Irreversible (Camin-Sokal parsimony)


• Dollo


• Step matrix



Limitations of Parsimony

• Doesn’t take branch lengths into account (limited to one change per branch, 
regardless of how long)


• Performs poorly with rapidly evolving traits, tending to push divergence 
toward the tips of the tree 


• Underestimates variance of rate parameters and ancestral reconstructions 
and doesn’t provide estimates of error



Maximum Likelihood Analysis of Trait Evolution

Pagel 1994. Proc. Royal Soc.

Schluter et al. 1997

Parsimony Maximum Likelihood



Maximum Likelihood Analysis of Trait Evolution

1. The Markov model for evolution of discretely 
coded traits


2. Using maximum likelihood to estimate rates of 
character evolution and ancestral character 
states







Advantages of Maximum Likelihood

• Incorporates branch length information and permits multiple changes along a 
single branch


• Superior performance with rapidly evolving traits


• Provides estimates of variance and error



The Markov Model

1. Probability of change at a point in time along any branch of the tree depends 
only on the character state at that time, not on prior character states


2. Transitions along each branch are independent of changes elsewhere on the 
tree


3. Rates of change are constant throughout time and along branches


4. Rates are estimated only from the tree and the data available for extant 
species, not on prior knowledge or belief



Parameters for Likelihood Evaluation

q01 = rate at which character changes from 0 to 1 
over a short interval dt!
!
q10 = rate at which character changes from 1 to 0 
over a short interval dt 
!
ti = branch lengths

!
si = ancestors

!
XN = set of possible ancestral reconstructions


t1 t2

t6

t3

t4 t5

t7

t8

s6

s9

s8

s7
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q01 = rate at which character changes from 0 to 1 
over a short interval dt!
!
q10 = rate at which character changes from 1 to 0 
over a short interval dt 
!
ti = branch lengths

!
si = ancestors 

L(I) = ∑ ∑ ∑ ∑ P(s8,s9,t8) !
!
x P(s3,s8,t3)P(s7,s8,t7)P(s5,s7,t5)!
x P(s4,s7,t4)P(s6,s9,t6)!
x P(s1,s6,t1)P(s2,s6,t2)

(5)
s9=0 s8=0 s7=0 s6=0

Likelihood Calculation

1 1 1 1



t1 t2

t6

t3

t4 t5

t7

t8

s6

s9

s8

s7

L(I) = ∑ ∑ ∑ ∑ P(s8,s9,t8) !
!
x P(s3,s8,t3)P(s7,s8,t7)P(s5,s7,t5)!
x P(s4,s7,t4)P(s6,s9,t6)!
x P(s1,s6,t1)P(s2,s6,t2)

s9=0 s8=0 s7=0 s6=0

Likelihood Calculation

2n-1 calculations
n # Calculations

5 16

10 512

50 5.63E+14

100 6.3383E+29

(5)

1 2 3 4 5
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L(I) = ∑[(∑P(s8,s9,t8) P(s3,s8,t3)!
 x ∑P(s7,s8,t7)P(s5,s7,t5) P(s4,s7,t4))!
 x ∑P(s6,s9,t6)P(s1,s6,t1)[!
 x P(s2,s6,t2)]

(6)

s9=0 s8=0

s7=0

s6=0

Felsenstein’s Pruning Algorithm

1

1 1

1

1
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(5)



t1 t2

t6

t3

t4 t5

t7

t8

s6

s9

s8

s7
((1,2),(3,(4,5))) 

(6)

Likelihood Calculation

1

1 2 3 4 5

L(I) = ∑[(∑P(s8,s9,t8) P(s3,s8,t3)!
 x ∑P(s7,s8,t7)P(s5,s7,t5) P(s4,s7,t4))!
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1 1

1

1
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t4 t5
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s9
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(6)

Likelihood Calculation

1 2 3 4 5

L(I) = ∑[(∑P(s8,s9,t8) P(s3,s8,t3)!

 x ∑P(s7,s8,t7)P(s5,s7,t5) P(s4,s7,t4))!

 x ∑P(s6,s9,t6)P(s1,s6,t1)[!

 x P(s2,s6,t2)]

s9=0 s8=0

s7=0

s6=0

1 1

1

2n-1 calculations v. 2(n-1) 

n # Calculations # Calculations

5 16 8

10 512 18

50 5.63E+14 98

100 6.3383E+29 198



The Transition Matrix

• Exponentiate the rate matrix (Q) times the length of the interval to obtain the 
probabilities over longer intervals

P P

P PP(t) = e-Qt =

0 1
0 -q q
1 q -q

Q =



Probability of Change

Pij(t+dt) = probability of change from i to j over 
interval t+dt = !
!
Pii(t)qijdt + Pij(t)(1-qji)dt!
!
!

c
Probability that i remains i over t

Rate for i to j over t

Probability that i goes to j over t

Rate for Staying j
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t4 t5

t7

t8
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s8
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(6)

Likelihood Calculation

1 2 3 4 5

0 (yellow) 1 (blue)

0 (yellow) 0.9 0.1

1 (blue) 0.1 0.9



t1 t2

t6

t3

t4 t5

t7

t8

s6

s9

s8

s7

(6)

Likelihood Calculation

1 2 3 4 5

0.01

0 (yellow) 1 (blue)
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= 0.10s7 4
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s7 5

s7

= 0.10
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Likelihood Calculation

1 2 3 4 5

0.01 0.81

0.081

0 (yellow) 1 (blue)

0 (yellow) 0.9 0.1

1 (blue) 0.1 0.9

= 0.90 x 0.01 + 0.10 x 0.81 = 0.009 + 0.081 = 0.090s8 0.01 0.81

s8 3 = 0.90

s8 = 0.09 x 0.90 = 0.081
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3 = 0.10

s8 = 0.730 x 0.10 = 0.073

s8
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= 0.90 x 0.081 + 0.10 x 0.073 = 0.0729 + 0.0073 = 0.0802s9 s80.081 0.073
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s9 = 0.0802 x 0.730 = 0.0585

s9 = 0.0657 x 0.0747 = 0.0049



Interpreting Ancestral Reconstructions



t1 t2

t6

t3

t4 t5

t7

t8

s6

s9

s8

s7

Likelihood Calculation

1 2 3 4 5

0.01 0.81

0.081 0.073

0.0585 0.0049

0.81 0.01

0 (yellow) 1 (blue)

0 (yellow) 0.9 0.1

1 (blue) 0.1 0.9

s9 = 0.0802 x 0.730 = 0.0585

s9 = 0.0657 x 0.0747 = 0.0049

∑πL0!
!
lnL = ln(0.0585 x 0.5 + 0.0049 x 0.5)!
= ln(0.029 + 0.002)!
= ln(0.031)!
= -3.459



Interpreting Ancestral Reconstructions

L(q01,q10) = ∑ P(s1,s2...sN)!

Obtain rate parameter(s) with highest likelihood among 
all possible reconstructions for a given tree topology 
and branch lengths.



Justification for the Markov Model & Some 
Potential Problems

• Although not necessarily the most realistic models possible, Markov 
processes are “simple ways to represent unpredictability.” - Schluter et al. 
1997


• Assumption of rate constancy cited by Schluter et al. 1997 as “the most 
glaring weakness,” but other problems exist as well


• Good news: new methods permit alternative models


• Assumes that the tree topology and branch lengths are known with certainty


• More good news: Bayesian methods to the rescue!


• Assumption that traits do not drive diversification.


• BiSSE model and extensions



Another Important Limitation

• May not be able to accurately estimate multiple rates (e.g., q01 v. q10)


• “Limiting the number of parameters is more crucial when estimating ancestor 
states than when estimating phylogenetic trees because here we are 
interested in a single character.  In contrast, likelihood estimates of trees use 
information on many characters (i.e., base pairs) simultaneously.” 


• Often assume a single rate



Examples

• Marginal likelihoods and rates


• Ancestral reconstruction


• Rate comparison and variation



Bayesian Analysis of Trait Evolution

Pagel et al. 2004. Systematic Biology



Bayesian Analysis of Trait Evolution



Bayes Theorem for Tree Reconstruction

p
∑

p(Ti|S) =

Likelihood Function Prior

Unconditional Probability

Posterior Probability

(1)

T = tree

S = aligned sequences



Bayes Theorem for Rate Coefficients

p
∫Q

p(Qi|D,T) =
Likelihood Function Prior

Unconditional Probability

(3)
Posterior Probability

Q = set of rate coefficients

D = dataset of trait values for species in our tree

1

2

5

6

3

4



Accounting for Phylogenetic Uncertainty

Q = set of rate coefficients

D = dataset of trait values for species in our tree

p

∫Q
p(Qi|D,T) = (3)

∫T
∫T 

p(Qi|D) = (4)

1
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5

6

3

4



Accounting for Phylogenetic Uncertainty

∫T
∫T 

p(Qi|D) = (4)

Q = set of rate coefficients

D = dataset of trait values for species in our tree

p

∫Q
p(Qi|D,T) = (3)

Integrate over all trees

1

2
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The Ancestral States

sij = j is the character state at node i

j = 0 or 1 for a binary trait

p(sij|D)i∈T = Posterior probability of j at node i given that 
node i appears in the tree (i∈T)

∫T 
∫T 

p(sij|D)i∈T = (5)



The Ancestral States

This equation only works when the node is present.

!
This is problem because we’re going to end up over-
estimating p(sij|D).


∫T 
∫T 

p(sij|D)i∈T = (5)



The Ancestral States

This equation only works when the node is present.

!
This is problem because we’re going to end up over-
estimating p(sij|D).


∫T 
∫T 

p(sij|D)i∈T = (5)

∫T 
∫T 

p(sij|D) = (6)



Bayesian MCMC for Character Reconstruction

1. Start with random parameters and tree sampled from posterior distribution of 
Bayesian phylogenetic analysis.


2. At each generation propose a new combination of rate parameters and a new 
tree from the posterior of our previous phylogenetic analyses




Bayesian MCMC for Character Reconstruction

1. Start with random parameters and tree sampled from posterior distribution of 
Bayesian phylogenetic analysis.


2. At each generation propose a new combination of rate parameters and a new 
tree from the posterior of our previous phylogenetic analyses


3. If new tree has higher posterior probability, accept the move


4. If the new tree has a lower probability, accept with probabilty new/current


5. Save parameters every n generation

R =
Pr(T1 | D) 
Pr(T2 | D) 



The Acceptance Ratio

∑TPr(Ti) Pr(D | Ti)
Pr(T1) Pr(D | T1)Pr(T1 | D) = 

R =

Pr(T2) Pr(D | T2)
Pr(T1) Pr(D | T1)R =

Pr(T1 | D) 
Pr(T2 | D) 

∑TPr(Ti) Pr(D | Ti)
Pr(T2) Pr(D | T2)Pr(T2 | D) = 

∑TPr(Ti) Pr(D | Ti)
Pr(T1) Pr(D | T1)

Pr(T2) Pr(D | T2)
R =



A Worked Example

• The evolution of pancreatic 
ribonuclease


• Shift from G to D at the base of the 
ruminants


• Previous analyses support this 
scenario, but with considerable 
uncertainty



Priors for Bayesian Character Reconstruction

• “Priors are the soft underbelly of Bayesian analyses.” - BayesTraits manual



Priors for Bayesian Character Reconstruction

• “Priors are the soft underbelly of Bayesian analyses.” - BayesTraits manual


• Because we’re concerned with only a single character, the priors can have a 
stronger impact than they might in a dataset with hundreds or thousands of 
nucleotides. Small sample Large sample

From Felsenstein 2004



Priors for Bayesian Character Reconstruction

• “Priors are the soft underbelly of Bayesian analyses.” - BayesTraits manual


• Because we’re concerned with only a single character, the priors can have a 
stronger impact than they might in a dataset with hundreds or thousands of 
nucleotides.


• In Pagel et al.’s worked example, the uniform or uninformative prior produces 
poor log-likelihood scores and rate posteriors with large variances and 
means.



Priors for Bayesian Character Reconstruction

• First calculate the rate parameter of the model on each tree in the dataset 
using maximum likelihood and derive a prior that emulates this distribution


• The “empirical Bayes estimator”



Fine Tuning Bayesian Inference of Character 
Evolution

• Obtaining a suitable estimate of the prior


• Ensuring proper mixing during MCMC


• Assessing burn-in


• Assessing variation among independent runs



Fine Tuning Bayesian Inference of Character 
Evolution: MCMCMC?

• “Our (unpublished) experience is that MCMCMC is of limited value in a 
phylogenetic context. Swapping of states is rare before convergence when 
the chains might be in different regions of the universe; and yet it is in these 
parts of the runs when exchanging information could be most valuable.”


• “By comparison, some number of independent MCMC chains begun from 
random starting points, requires the same computing power as one 
MCMCMC run with the same number of chains, but each chain can be used 
for inference. This makes the MCMC procedure, other things equal, more 
efficient. If all of the independent runs converge to the same region of the tree 
space, this provides evidence that the chains have explored the tree space 
effectively.”

Pagel et al. 2004



Within Versus Between Tree Variance



Within Versus Between Tree Variance



BayesTraits

• Investigating trait evolution in a plant radiation


• Estimating forward and reverse rate parameters


• Ancestral character state reconstruction



Stochastic Character Mapping



Stochastic Character Mapping

• Advantages over parsimony


• 1. (most importantly) only one change per branch


• 2. underestimates variance by only considering the most parsimonious 
reconstruction


• 3. no framework for accommodating uncertainty in the phylogenetic 
reconstruction


• Bollback 2006



Evolution of venom proteins in reptiles

Casewell et al. 2012. Nature Communications



Evolution of Pharyngognathy

• BiSSE, etc.



Painting branches

• varanid example



Stochastic mapping

• The basic algorithm


• 1. Calculate conditional likelihood for each state at each node


• 2. Simulate ancestral states at internal nodes by sampling from posterior


• 3. Simulate substitution history by sampling from posterior conditional on 
reconstructions from step 2 and observed states at the tips of the tree. 
Waiting times from exponential distribution with rate from diagonal of Q 
matrix conditioned on current state



Stochastic mapping in R	

• make.simmap function 


• Primitive functionality relative to SIMMAP, but easier to learn with


• Line by line through make.simmap


