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Overview

o Think a bit about phylogenetic reconstruction
o Do our simplifications cause problems?

o Afew cases where they might, and how we might deal with
those issues when they arise.

Sources of gene tree variation

o Incomplete coalescence

o Horizontal transfer

o Gene duplication




Anatomy of a tree

o What are phylogenetic lineages?

o Each species lineage implicitly
contains populations of reproducing
populations

o Phylogenies among species are
simplifying this process

Anatomyof atree -

o Let’s say we want to infer a phylogeny of
these 3 butterfly species

o We collect data for an individual from
each species and infer a phylogeny

Anatomy of a tree

o Let's say we want to infer a phylogeny of
these 3 butterfly species

o We collect data for an individual from
each species and infer a phylogeny

o Implicitly, were saying that the
evolutionary relationships among
those three individuals match the
evolutionary relationships among the

three species
o (an this cause problems?

Molecular Phylogenetics

o This is a simplification

[q]

o The G->T substitution is a population
genetic process

Most recent T
common
ancestor G ~T T

of alleles\

> i.e., a single mutation occurred in one
individual in an ancestral population. It
then increased in frequency until it
became fixed in the whole species.




Molecular Phylogenetics

o We need to connect our simplified phylogenies of species to
trees of individuals

> We can build a model for this

o Will start with a case involving only a single species
> The coalescent

o Then extend to multiple species

. The multispecies cozlescent

The coalescent model

o Imagine a single species made up of N
diploid individuals (2n total alleles)

o Let’s think about the relationships
between all of those alleles

o Here alleles simply refer to
physical copies of a particular
locus, not distinct forms of that
locus

Time
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The coalescent model

o How many generations ago did these alleles last share a
common ancestor?

o We can model this in a very simple way...

The coalescent model

o The probability of 2 lineages coalescing is
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1
N

probability of them choosing the same

o The probability of 2 lineages coalescing is the
coalescenceis simply /N

o Because of this, the expected time until

o Probability of no coalescence for g

o Probability that coalescence occurs g+1
generations back:

generations

)x(l—%

1
N

The coalescent model

B

The coalescent model
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The coalescent model

()
N

o n choose 2 accounts for the variety of ways that
n!

coalescence can occur
2l(n — 2)!

o Probability of event g+1 generations back:
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o Geometric distribution is a discrete time
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The coalescent model

The coalescent model
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o Geometric distribution is a discrete time

The coalescent model
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The coalescent model

o Geometric distribution is a discrete time
distribution

o Continuous time version is the exponential
distribution

)\e—)\t

o As N goes to infinity, the coalescent process

with instantaneous rate of coalescence:

=

The coalescent model

converges to a continuous time markov process

o Weve been assuming constant population size

=
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The coalescent model

o Weve been assuming constant population size

o Instead of N, we can specify a function that
describes a changing population size through
¢ time

.@

N =P N (1)

=

The coalescent model

o Weve been assuming constant population size

o Instead of N, we can specify a function that
describes a changing population size through
¢ time

.@

N ==p N (1)

=

o Our instantaneous rate of coalescence is a
function of N, so we need to integrate the rate
of coalescence across the function for N

N(t)

%e 3 _,()exp<_/0 (3)

N(t

)
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The coalescent model

o We have a nice function to calculate the probability of
one coalescent event occurring at time t, givena

The coalescent model

o We have a nice function to calculate the probability of
one coalescent event occurring at time t, given a

cae demographic functlon of t: cae demographic functlon of t:
S | ron ([ ) B |0 ron G ([ )
ceeseeseees ceeceseeces o What is the probability of all coalescent events observed
N N ina sample?
29 30

The coalescent model

o We have a nice function to calculate the probability of
one coalescent event occurring at time t, given a

)

cae demographic functlon of t:
13k P
L] L) L t eX
s, [ PO= P / NG
cccecscess
00 0000O0OCGCONOSS
o What is the probability of all coalescent events observed
N ina sample?

o Given a demographic function and a list of
coalescence times [, =

(05 tTH tn717

)

The coalescent model

o We have a nice function to calculate the probability of
one coalescent event occurring at time t, given a

)

cae demographic functlon of t:
12k P
° L) [ ] t eX
e, | PO= P N
cccecsssee
00 0000OCGOINOSOS
o What is the probability of all coalescent events observed
N ina sample?

- Given a demographic function and a list of
coalescence times [, =

o Eacheventi |s |ndependent so take the product

HN

P(L|N(t)

(07tn7 tnflv

)

(- )

31

32




The coalescent model

o Starting with first principles, we can derive a model that
describes the probability of coalescence histories within a
lineage

The coalescent model 3 P

o Starting with first principles, we can derive a model that
describes the probability of coalescence histories withina
lineage

o Connects our simplified idea of a phylogenetic lineage back .
to the underlying individual sampling "

33
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The coalescent model

o Starting with first principles, we can derive a model that
describes the probability of coalescence histories within a
lineage

o Connects our simplified idea of a phylogenetic lineage back
to the underlying individual sampling

o We end up with an equation that allows us to calculate the
likelihood of an observed set of coalescence times within a

lineage o) C o
NP (‘/ N

N——

=2

The coalescent model

THE IMPORTANT Presnt
THING TO REVEMBER:

o Probability of coalescence within
a population depends on:

o Population size

. Past
o Number of generations

P(LIN() =]
35
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The coalescent model

o Connecting this to multiple species

o A phylogenetic tree of species is
simply a collection of these
population lineages

The multispecies coalescent

B C

Ancestor of BC

37
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containing tree //
= species tree

contained tree
= gene tree

Maddison 1997

The multispecies coalescent

Present

o Each branch in the species tree has it | sy
a duration (Number of generations) L
and a population size

o The multispecies coalescent joins
each of these together

39
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The multispecies coalescent

The multispecies coalescent

o |f we sample 2 alleles, they have some
probability of coalescing before the
population ends at the ancestor

=

Y cd
<

Y o oo
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The multispecies coalescent

v C g
o |f we sample 2 alleles, they have some (\}i/’
probability of coalescing before the

population ends at the ancestor

o Which means they also have some
probability of not coalescing

o Depends on the population size and
the number of generations

The multispecies coalescent

o Likewise, if we sample one allele from each of two different
species, there is some probability that the two alleles will
coalesce in the ancestor

B C

Ancestor of BC
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The multispecies coalescent

o But there is also some probability that they will not.

o This is called incomplete coalescence

o What does the probability depend on?
B C

Ancestor of BC

The multispecies coalescent

o If they don't coalesce within the ancestor, they move down
into the next ancestral population

A B C
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The multispecies coalescent

o Now they can coalescein 3 different ways with equal

probability!
A B &7 y/

The multispecies coalescent

o Now they can coalesce in 3 different ways with equal

probability!

A B

V
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The multispecies coalescent

o Now they can coalesce in 3 different ways with equal
probability!

A B

The multispecies coalescent

o Only 1 of the 3 matches the actual species phylogeny

o Soif there is an incomplete coalescence event in the
alleles that we sampled, we have a 2/3rds chance of
getting the wrong tree

o How do we determine the probability of incomplete
coalescence?

4

-
-y
gﬁy

50

The multispecies coalescent

o The probability depends on the coalescent process that occurs
within each lineage

o We can break up the tree into its component parts
o Each part has an ‘input’ and an ‘output’ number of lineages
o Inherits the input from what happens above it

o Output depends on the population size and the duration of
the branch

The multispecies coalescent

o Gene 1 might look like this

A B C

51
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The multispecies coalescent

o While another gene looks like this. Each unlinked gene tree is
anindependent sample.

A B C

The multispecies coalescent

~ Present

> S0 does our phylogenetic sampling || %5
cause problems? h

o |.e., does our tree of individuals
match our tree of species?

o Answer: Not necessarily, it depends
on the population sizes and
durations

Past

53
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The multispecies coalescent

o For some species, gene trees are fantastic estimates of the species tree

o Butin other cases they aren't

The multispecies coalescent

o We can simulate this
Q NNNN

orangutan
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Empirical Example

OPEN G ACCESS Freely available online PLoS

Widespread Discordance of Gene Trees
with Species Tree in Drosophila: Evidence
for Incomplete Lineage Sorting

Daniel A. Pollard’, Venky N. Iyer’*, Alan M. Moses'®, Michael B. Eisen">**"

o Genomic data for each of:
o D.ananassae - outgroup
o D. melanogaster
o D.erecta

o D.yakuba

Pollard et al. 2006

Empirical Example

Tree 3
Tree 1 Tree 2

Dmel Dvak Dere Dana
Dmel Dere Dyak Dana Dmel Dere Dvak Dana

Pollard et al. 2006
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Empirical Example

Tree 1 Tree 2 Tree 3

Dmel Dere Dyak Dana Dmel Dere Dyak Dana Dmel Dvak Dere Dana

Nucleotide substitutions (in 9405
genes): Tree1-170,002, Tree 2-112,278,
Tree 3-98,117.

A Nucleotides B AminoAcids

Gene trees (under ML): Tree 1- 5,381,
Tree 2- 2,188, Tree 3-1,746

Conclude: Tree 1 ((erecta,yakuba),
melano) wins, but lineage sortingis a
huge problem.

B Tree1 [l Tree2 [l Tree3

Pollard et al. 2006

Anomolous gene trees

o There are cases where the wrong tree is more likely to be
inferred than the correct tree

o 4 taxon asymmetric tree
o If branches x and y are short -> lineages join randomly

o Two ways to get a symme’gic tree, only 1 to get the correct tree

59

Degnan and Rosenberg 2006
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Empirical Example

o Human, Chimp, Gorilla

o Look at distribution of genome trees across the entire
genome

OPEN @ ACCESS Freely available online PLOS
Genomic Relatlonshlps and Speciation Times
of Human, Chimpanzee, and Gorilla Inferred
from a Coalescent Hidden Markov Model

2 .

istensen?, Thomas Mailund>, Mikkel H. Schie:

ol 2 ersity, Raleigh, lina, United States of America, 2 Bioinformatics Research Center, University of Aarhus,
‘Aarhus, Denmark, 3 Department of Statistics, University of Oxford, Oxford, United Kingdom

Empirical Example

Hobolth et al. 2007

Empirical Example Empirical Example
*W F\FWT M\ 1k J [ rmmm [ é‘&i
{0 T O i o
90 0 0 A

MMAM

Hobolth et al. 2007

Alg nment colu mn(kb)

mmm

human  chimp gorilla  human  chimp gorilla  human  chimp  gorilla

Hobolth et al. 2007




Minimize Deep Coalescence

o given a set of gene trees, find the species tree that
minimizes the implied number of deep coalescences
(Maddison 1997, Maddison and Knowles 2006)

CULLLLOULOUL o ooty

agaagacnocnoans

292ITITARBS

100,000 generations
—

Maddison and Knowles 2006

65 66
inimize Deen Coal
Minimize Deep Coalescence
i > simple and intuitive

o but ignores important information (branch lengths), no
measure of support

o software packages

o mesquite

=T C - deep

—— — M - Phylonet

L o

= o Doesnt explicitly model the coalescent process, places all
probably on single histories

Maddison and Knowles 2006
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Multispecies coalescent inference Statistical inference

s
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o Perhaps a better solution: o What weve been doing:

o We have this nice model, we can use statistical inference

to infer species trees from gene trees and/or alignments + Inference under the MC. in the

most general case, involves
adding another level to this
model.

Frequencies = (0.1,0.5,0.2,0.3)

69 70

The multispecies coalescent

80%
0% I T T T T I T T T T I T T T T I T T T T I T T T
0.00110.004 0.008 0016 0.001/0.004 0.008 0.016 0.00110.004 0.008 0016 0.00110.004 0.008 0.016 0.00110.004 0.008 0.016

° o 0.002 0.002 0.002 0.002 0.002
r{ . E E . Tree Height

[ Expected CONCOrdance emmms w=== Bayesian Concordance Analysis (BUCKyj

70%
60%
50%
40%
30%
20%
10%

Genel Gene2 Gene3 Gened  Gene

Accuracy

)

Concatenation (Parsimony) e ML Coalescent Model (STEM)
Concatenation (Bayesian) e==== === Bayesian Coalescent Model (BEST)

Leache and Rannala 2011
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*BEAST Model

p(s|p) = Lz P !]gz()D)(gAS)P(S)

o 4 components:

Heled and Drummond 2010

*BEAST Model

p(s|p) = iz Pl Bzz()D)(gi‘S)P(S)

o 4 components:

oP(d;|g; ) standard likelihood for alignment and gene tree i

Heled and Drummond 2010
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*BEAST Model

P(S|D) = I[, P(d; |ng()1> )(gi|S)P(S)

o 4 components:

oP(d;|g; ) standard likelihood for alignment and gene tree

oP(9:]5)- coalescent likelihood of gene trees

Heled and Drummond 2010

*BEAST Model

p(s|p) = iz P %()D)(QAS)P(S)

o 4 components:

oP(d;|g; ) standard likelihood for alignment and gene tree i
oP(9:]5)- coalescent likelihood of gene trees

o P(S) - uniform topology P(D) - normalizing constant
- birth-death or Yule branching

- gamma pop sizes with hyperprior b oo
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*BEAST

P(gi]S)
o Likelihood of gene trees given the species tree

o We have an equation to calculate the likelihood of

coalescent histories within a lineage

z\(rZZ) *P (‘ Ot J\(f%)dt>

o How might we extend this to a whole tree?

P(LIN() =]]

Heled and Drummond 2010

*BEAST

o Answer: take the product of the coalescent likelihood
along each branch

Heled and Drummond 2010
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*BEAST

o Answer: take the product of the coalescent likelihood
along each branch

P(g|S) = [[ P(Lu(9)IN(2))
beS

Heled and Drummond 2010

*BEAST

IT;=1 P(dslgi) P(gi| S)P(S)
P(D)
o Assumptions and limitations:

P(S|D) =

o lineage sorting only source of incongruence
o no gene flow following speciation

o Implements a couple of demographic functions

Heled and Drummond 2010
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ic functions

*BEAST demograp

o Constant size

o Linear change

Time

Time

6

25

20

s2 Ss3 sS4 S5

S6 SO0 S1

Population
T T

Heled and Drummond 2010

*BEAST - Pocket Gophers

0.035

0.030

0.025

0.020

Time

0.015

0.010

0.005

0.000

Population

bottae townsendii umbrinus heterodus mazama monticola talpoides idahoensis

Heled and Drummond 2010

82

*BEAST

*BEAST
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Sources of gene tree variation

o Incomplete coalescence

o Horizontal transfer

o Gene duplication

Horizontal gene transfer

A B C D

o (aused by hybridization or transfer via
vectors

- Leads to a network like species history ~ Horizontal
transfer

o Can occur in conjunction with
incomplete coalescence

Maddison 1997

85
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Horizontal gene transfer

Species Tree Gene Tree

Horizontal gene transfer

N AL LI . o One approach: uses a technique called posterior predictive simulation to
3 W LE&Z—T assess the probability of observing “young” nodes under the multispecies
o Work on this is also emerging - coalescent by itself
° One baSiC idea is tO use the . T Incomplete lineage sorting Hybridization
distribution of branching times to %
detect shallow branching events o gom_ ocoo o m O O
. 5 79126 %0 -/ \ -/ \ 53
that are unlikely under the 5 O O O---0
coalescent 2 L o | | | [
Joly etal. 2012 & J Joly etal. 2012
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Horizontal gene transfer

o Steps for posterior predictive simulation:

o perform species tree analyses (**BEAST) Ig! ?
; v g g

E e

Joly et al. 2012

Horizontal gene transfer

o Steps for posterior predictive simulation:
o perform species tree analyses (*BEAST)

o Sample species trees, branch lengths, and
population sizes from the posterior
distribution

o Use these samples to simulate sequences

966 Q
/]

£ = | : i :
‘E ¥ i ¥ i ¥
i | L ooe :

Joly et al. 2012

89

90

Horizontal gene transfer

o Steps for posterior predictive simulation:

o perform species tree analyses (**BEAST)

o Sample species trees, branch lengths, and
population sizes from the posterior
distribution

o Use these samples to simulate sequences

o Find the minimum pairwise distance
between simulated sequences for your
species of interest

Posterior predictive
distribution of minimum
pairwise divergences

Horizontal gene transfer

Joly et al. 2012

o Steps for posterior predictive simulation:
o perform species tree analyses (*BEAST)

o Sample species trees, branch lengths, and
population sizes from the posterior
distribution

o Use these samples to simulate sequences ‘

o Find the minimum pairwise distance
between simulated sequences for your
species of interest

o Compare the minimum observed pairwise

difference to construct p-value
p = P(minDist(AB) < mindDist(AB)*™)

Posterior predictive
distribution of minimum
pairwise divergences

Joly et al. 2012
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Power to detect hybridization
[T
%

Horizontal gene transfer - =

0.05]

Hybridization
O
|/ \ t |
O---0O D)
| (K
® '

Power to detect hybridization

%

Horizontal gene transfer - =

0.05 0.05

t 153

0.00001

0

0 005 0 005
t. t

1000 bp

5000 bp

1
005
tz
0
0 005
3]

005
153
]

1
0 005 0 005
t
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Sources of gene tree variation

o Incomplete coalescence

o Horizontal transfer

nnnnnnnnnnnn

’
o Gene duplication v

Gene Duplication

A B C D

@ Surviving sequence

m
Duplication/
extinction

o gene duplications and extinctions can yield misleading
gene trees.

o parsimony and likelihood approaches for addressing this

Maddison 1997
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Gene Duplication

o One solution: Just avoid the problem altogether

o This may often be the best option

Gene Duplication

o One solution: Just avoid the problem altogether
o This may often be the best option

o For well characterized genomes, focus on known single copy
genes
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Gene Duplication

o One solution: Just avoid the problem altogether
o This may often be the best option

o For well characterized genomes, focus on known single copy
genes

o More problematic with large genome scale datasets

o Need to be careful about automated homology
assignment

Gene Tree Parsimony

o input a collection of rooted gene trees, find the species tree
that minimizes the reconciliation cost

o reconciliation cost is number of duplications, or
duplications and losses, summed across gene trees

99
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Gene Tree Parsimony

o example gene tree:

B A

>~

C D

o calculate reconciliation costs for species trees

Gene Tree Parsimony

A B C

Reconciliation score = 5

101
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Gene Tree Parsimony

A B C

\Y

Reconciliation score = 4

Gene Tree Parsimony

Reconciliation score = 0

103
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Empirical Example

o Sanderson and McMahon 2007

o GTP analysis of 576 gene trees for 6 angiosperm species (plus
outgroup)

o known species tree recovered successfully despite massive gene
duplication

Pinus
A. Based (outgroup)
on ML

gene trees

ML gene trees

Oryza
sativa

Solanum
tuberosum

100
Arabidopsis
thaliana
Glycine 50
max ¢ I
RN || AN —

japonicus 2883288828888 888¢8
K8E8858885888852¢2t

Medicago R

truncatula Out-duplication score

Gene Tree Parsimony

o small trees - Gtp (Sanderson and McMahon 2007)
o large trees - DupTree (Wehe et al 2008)
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Statistical Approaches

o Likelihood methods for inferring gene trees and duplication and
loss history given a species tree have existed for some time

Statistical Approaches

o Likelihood methods for inferring gene trees and duplication and
loss history given a species tree have existed for some time

o Until recently, no methods available to do the joint inference

Boussau et al. 2013
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Statistical Approaches

o Likelihood methods for inferring gene trees and duplication and
loss history given a species tree have existed for some time

o Until recently, no methods available to do the joint inference

(L(T. 8, N|A)|= T [ L(S. NIT:) L(T;|Ay)
1€g

Boussau et al. 2013

Statistical Approaches

o Likelihood methods for inferring gene trees and duplication and
loss history given a species tree have existed for some time

o Until recently, no methods available to do the joint inference

L(T,S,N|A) = HL(SaNlTi) (T3] A;)

ieg

Boussau et al. 2013
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Statistical Approaches

o Likelihood methods for inferring gene trees and duplication and
loss history given a species tree have existed for some time

o Until recently, no methods available to do the joint inference

[[EENT x4

1eg

L(T, S, N|A) =

Boussau et al. 2013

Statistical Approaches
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Statistical Approaches
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Sources of gene tree variation

eeeeeeeeeeeeeee

o Incomplete coalescence W

o Horizontal transfer :?

N\
o Gene duplication Y(VA
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Sources of gene tree variation

The inference of gene trees with species trees

GERGELY J. SzOLLOsI!, Eric TANNIER?®*, VINCENT DAUBIN*3, BASTIEN BOuUssAu®3

Wrapping up

arXiv: 1311.0651v1

o Some thoughts:

o There are several options here, you should carefully
choose a model based on biological knowledge

o Need for more simulation studies
o Sensitivities to priors and demographic functions

o Data needs are substantial
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*BEAST - dataset design

(a)

branch score ——
tree score -3 |

050 X

0.25

Error

0.13

0.06 [

Credible Interval Size
[e<]

Heled and Drummond 2010

*BEAST - dataset design
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Difficulties

o Often making some strong assumptions:
o changes or constancy of population size
o species membership and assignments
o sources of gene tree variation

o Not always well known how robust it is to deviations
from the correct model

Coalescent model plausibility

Phylogenetic
likelihood Relaxed clock

*BEAST — P(D|G) [ posterior
analysis Empirical gNtA distribution
model sequence cata =P | of genetrees
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oalescent model plausibility
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