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Overview

Think a bit about phylogenetic reconstruction 

Do our simplifications cause problems? 

A few cases where they might, and how we might deal with 
those issues when they arise.
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Incomplete coalescence  

!

Horizontal transfer 

!

Gene duplication

Sources of gene tree variation
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Anatomy of a tree

What are phylogenetic lineages? 

Each species lineage implicitly 
contains populations of reproducing 
populations 

Phylogenies among species are 
simplifying this process
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Anatomy of a tree
Let’s say we want to infer a phylogeny of 
these 3 butterfly species 

We collect data for an individual from 
each species and infer a phylogeny 

Implicitly, we’re saying that the 
evolutionary relationships among 
those three individuals matches the 
evolutionary relationships among the 
three species 

Can this cause problems?
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Molecular Phylogenetics

This is a simplification 

The G->T substitution is a population 
genetic process 

i.e., a single mutation occurred in one 
individual in an ancestral population. It 
then increased in frequency until it 
became fixed in the whole species.
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Molecular Phylogenetics
We need to connect our simplified phylogenies of species to 
trees of individuals 

We can build a model for this 

Will  start with a case involving only a single species 

The coalescent 

Then extend to multiple species 

The multispecies coalescent
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The coalescent model
Imagine a single species made up of N 
diploid individuals (2n total alleles) 

Let’s think about the relationships 
between all of those alleles 

Here alleles simply refer to 
physical copies of a particular 
locus, not distinct forms of that 
locus
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The coalescent model
How many generations ago did these alleles last share a 
common ancestor? 

!

We can model this in a very simple way...
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The coalescent model

The probability of 2 lineages coalescing is the 
probability of them choosing the same 
ancestor: 

Because of this, the expected time until 
coalescence is simply

1
N

N

N
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The coalescent model
Probability that coalescence occurs g+1 
generations back: 

Probability of no coalescence for g 
generations 
 
 

followed by coalescence 1
N

(1� 1
N

)⇥ (1� 1
N

)... = (1� 1
N

)g

=
1
N

(1� 1
N

)gN

g
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The coalescent model

This is the geometric distribution 

Describes the time of the first success 
for independent trials with probability of 
success p and probability of failure (1-p) 

Rate = p or 1/N 

Mean = 1/p or N
N

g =
1
N

(1� 1
N

)g
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The coalescent model
Probability of coalescence event (or success 
rate) among n sampled lineages is 
 
 

n choose 2 accounts for the variety of ways that 
coalescence can occur

N

g

�n
2

�

N

n!
2!(n� 2)!
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The coalescent model

Probability of coalescence event (or success 
rate) among n sampled lineages is 
 

n choose 2 accounts for the variety of ways that 
coalescence can occur 

!

Probability of event g+1 generations back:
N

g

�n
2

�
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The coalescent model
Geometric distribution is a discrete time 
distribution 

Continuous time version is the exponential 
distribution 
 
 

As N goes to infinity, the coalescent process 
converges to a continuous time markov process 
with instantaneous rate of coalescence:

N

�e��t

� =
�n
2

�

N

t
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The coalescent model
We’ve been assuming constant population size 

Instead of N, we can specify a function that 
describes a changing population size through 
time 
 

Our instantaneous rate of coalescence is a 
function of N, so we need to integrate the rate 
of coalescence across the function for N

N

t
N(t)N

�n
2

�

N
e�

(n
2)
N

�n
2

�

N(t)
exp

 
�
Z t

0

�n
2

�

N(t)
dt

!
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The coalescent model
We have a nice function to calculate the probability of 
one coalescent event occurring at time t, given a 
demographic function of t: 
 
 

What is the probability of all coalescent events observed 
in a sample? 

Given a demographic function and a list of 
coalescence times 

Each probability is independent, so take the product

N

t

L = (0, tn, tn�1, ...)

P(L|N(t)) =

nY

i=2

�n
2

�

N(t)
exp

 
�
Z t

0

�n
2

�

N(t)
dt

!

P(t) =

�n
2

�

N(t)
exp

 
�
Z t

0

�n
2

�

N(t)
dt

!
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The coalescent model
We have a nice function to calculate the probability of 
one coalescent event occurring at time t, given a 
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The coalescent model
Starting with first principles, we can derive a model that 
describes the probability of coalescence histories within a 
lineage 

Connects our simplified idea of a phylogenetic lineage back 
to the underlying population genetics 

We end up with an equation that allows us to calculate the 
likelihood of an observed set of coalescence times
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The coalescent model
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Connects our simplified idea of a phylogenetic lineage back 
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We end up with an equation that allows us to calculate the 
likelihood of an observed set of coalescence times within a 
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The coalescent model

Probability of coalescence within 
a population depends on: 

Population size 

Number of generations
Past 

Present Present

Past

THE IMPORTANT 
THING TO REMEMBER:
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The coalescent model
Connecting this to multiple species 

A phylogenetic tree of species is 
simply a collection of these 
population lineages

Past 

Present 

Present

Past

A B C
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The multispecies coalescent

B C

Ancestor of BC

The multispecies coalescent
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containing tree contained tree
= species tree = gene tree

The multispecies coalescent

Maddison 1997
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The multispecies coalescent
Present

Past

Each branch in the species tree has 
a duration (Number of generations) 
and a population size 

The multispecies coalescent joins 
each of these together
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The multispecies coalescent
B C

Ancestor of BC
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If we sample 2 alleles, they have some 
probability of coalescing before the 
population ‘ends’ at the ancestor 

Which means they also have some 
probability of not coalescing 

Depends on the population size and 
the number of generations

The multispecies coalescent
C
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If we sample 2 alleles, they have some 
probability of coalescing before the 
population ‘ends’ at the ancestor 

Which means they also have some 
probability of not coalescing 

Depends on the population size and 
the number of generations

The multispecies coalescent
C
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The multispecies coalescent
Likewise, if we sample one allele from each of two different 
species, there is some probability that the two alleles will 
coalesce in the ancestor

B C

Ancestor of BC
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The multispecies coalescent
But there is also some probability that they will not. 

This is called incomplete coalescence 

What does the probability depend on?
B C

Ancestor of BC
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The multispecies coalescent
If they don’t coalesce within the ancestor, they move down 
into the next ancestral population

B CA
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The multispecies coalescent
Now they can coalesce in 3 different ways with equal 
probability!

B CA

B CA
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The multispecies coalescent
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The multispecies coalescent

Only 1 of the 3 matches the actual species phylogeny 

So if there is an incomplete coalescence event in the 
alleles that we sampled, we have a 2/3rds chance of 
getting the wrong tree 

How do we determine the probability of incomplete 
coalescence?

50

The multispecies coalescent

The probability depends on the coalescent process that occurs 
within each lineage 

We can break up the tree into its component parts 

Each part has an ‘input’ and an ‘output’ number of lineages 

Inherits the input from what happens above it 

Output depends on the population size and the duration of 
the branch
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The multispecies coalescent

B CA

Gene 1 might look like this
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The multispecies coalescent

B CA

While another gene looks like this. Each unlinked gene tree is 
an independent sample.
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The multispecies coalescent
Present

Past

So does our phylogenetic sampling 
cause problems? 

I.e., does our tree of individuals 
match our tree of species? 

Answer: Not necessarily, it depends 
on the population sizes and 
durations
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The multispecies coalescent
For some species, gene trees are fantastic estimates of the species tree 

But in other cases they aren’t
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The multispecies coalescent
We can simulate this

Model

N N N N N
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Empirical Example

Genomic data for each of: 

D. ananassae - outgroup 

D. melanogaster 

D. erecta 

D. yakuba

Pollard et al.  2006
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Empirical Example

Pollard et al.  2006
58

Empirical Example

Nucleotide substitutions (in 9405 
genes): Tree1-170,002, Tree 2-112,278, 
Tree 3- 98,117. 
!
Gene trees (under ML): Tree 1- 5,381, 
Tree 2- 2,188, Tree 3-1,746 
!
Conclude: Tree 1 ((erecta,yakuba), 
melano) wins, but lineage sorting is a 
huge problem.  

Pollard et al.  2006
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Anomolous gene trees
There are cases where the wrong tree is more likely to be 
inferred than the correct tree 

4 taxon asymmetric tree 

If branches x and y are short -> lineages join randomly 

Two ways to get a symmetric tree, only 1 to get the correct tree

Degnan and Rosenberg 2006
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Empirical Example
Human, Chimp, Gorilla 

Look at distribution of genome trees across the entire 
genome
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Empirical Example

Hobolth et al. 2007
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Empirical Example

Hobolth et al. 2007
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Empirical Example

Hobolth et al. 2007
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Minimize Deep Coalescence

given a set of gene trees, find the species tree that 
minimizes the implied number of deep coalescences 
(Maddison 1997, Maddison and Knowles 2006)
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Maddison and Knowles 2006
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Maddison and Knowles 2006
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Minimize Deep Coalescence
simple and intuitive 

but ignores important information (branch lengths), no 
measure of support 

software packages 

mesquite 

deep 

Phylonet 

Doesn’t explicitly model the coalescent process, places all 
probably on single histories
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Multispecies coalescent inference

Perhaps a better solution: 

We have this nice model, we can use statistical inference 
to infer species trees from gene trees and/or alignments
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Statistical inference

What we’ve been doing: 

!

Inference under the MC, in the 
most general case, involves 
adding another level to this 
model.

Model

Frequencies = (0.1, 0.5, 0.2,0.3)

70

The multispecies coalescent
Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Multispecies 
Coalescent 

Model

θ θ θ 
   θ θ

71

Leache and Rannala 2011
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*BEAST Model

4 components: 

                - standard likelihood for alignment and gene tree i  

                - coalescent likelihood of gene trees  

                - uniform topology 
                - birth-death or Yule divergence 
                - gamma pop sizes with hyperprior

P (di|gi)

P (gi|S)

P (S)

P (S|D) =
Qn

i=1 P (di|gi)P (gi|S)P (S)
P (D)

P (D) -Marginal likelihood

Heled and Drummond 2010
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*BEAST Model

4 components: 

                - standard likelihood for alignment and gene tree i  

                - coalescent likelihood of gene trees 

                - uniform topology 
                - birth-death or Yule branching 
                - gamma pop sizes with hyperprior

P (di|gi)

P (gi|S)

P (S)

Heled and Drummond 2010

P (S|D) =
Qn

i=1 P (di|gi)P (gi|S)P (S)
P (D)

P (D) - normalizing constant
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*BEAST

Likelihood of gene trees given the species tree 

We have an equation to calculate the likelihood of 
coalescent histories within a lineage 
 
 

How might we extend this to a whole tree?

P (gi|S)

P(L|N(t)) =

nY

i=2

�n
2

�

N(t)
exp

 
�
Z t

0

�n
2

�

N(t)
dt

!

Heled and Drummond 2010
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*BEAST
Answer: take the product of the coalescent likelihood 
along each branch

Heled and Drummond 2010

nY
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�n
2

�

N(t)
exp

 
�
Z t
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�n
2

�

N(t)
dt

!

nY

i=2

�n
2

�

N(t)
exp

 
�
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�
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�
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�
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�
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�
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�
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nY
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�n
2

�

N(t)
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�
Z t
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�n
2

�

N(t)
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!

⇥

⇥

⇥

⇥

=
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*BEAST

Heled and Drummond 2010

P(g|S) =
Y

b2S

P(Lb(g)|Nb(t))

Answer: take the product of the coalescent likelihood 
along each branch
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*BEAST

Assumptions and limitations: 

lineage sorting only source of incongruence 

no gene flow following speciation 

Implements a couple of demographic functions

Heled and Drummond 2010

P (S|D) =
Qn

i=1 P (di|gi)P (gi|S)P (S)
P (D)
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*BEAST demographic functions

Constant size 
 
 
 

Linear change

Heled and Drummond 2010
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*BEAST - Pocket Gophers

Heled and Drummond 2010
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*BEAST

83

*BEAST
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Incomplete coalescence  

!

Horizontal transfer 

!

Gene duplication

Sources of gene tree variation
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Horizontal gene transfer 

Caused by hybridization or transfer via 
vectors 

Leads to a network like species history 

Can occur in conjunction with 
incomplete coalescence

Maddison 1997
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Horizontal gene transfer

Work on this is also emerging 

One basic idea is to use the 
distribution of branching times to 
detect shallow branching events 
that are unlikely under the 
coalescent

Joly et al. 2012
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Horizontal gene transfer
One approach: uses a technique called posterior predictive simulation to 
assess the probability of observing “young” nodes under the multispecies 
coalescent by itself

Joly et al. 2012
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Horizontal gene transfer
Steps for posterior predictive simulation: 

perform species tree analyses (*BEAST) 

Sample species trees, branch lengths, and 
population sizes from the posterior 
distribution 

Use these samples to simulate sequences 

Find the minimum pairwise distance 
between simulated sequences for your 
species of interest 

Compare the minimum observed pairwise 
difference to construct p-value

Joly et al. 2012

Multispecies 
Coalescent 

Model

θ θ θ 
   θ θ
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distribution 

Use these samples to simulate sequences 

Find the minimum pairwise distance 
between simulated sequences for your 
species of interest 

Compare the minimum observed pairwise 
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Horizontal gene transfer
Steps for posterior predictive simulation: 

perform species tree analyses (*BEAST) 

Sample species trees, branch lengths, and 
population sizes from the posterior 
distribution 

Use these samples to simulate sequences 

Find the minimum pairwise distance 
between simulated sequences for your 
species of interest 

Compare the minimum observed pairwise 
difference to construct p-value

Joly et al. 2012p = P(minDist(AB) < mindDist(AB)sim)

Posterior predictive 
distribution of minimum 

pairwise divergences
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Horizontal gene transfer

93

Horizontal gene transfer
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Incomplete coalescence  

!

Horizontal transfer 

!

Gene duplication

Sources of gene tree variation
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Gene Duplication
Surviving sequence

gene duplications and extinctions can yield misleading 
gene trees. 

parsimony and likelihood approaches for addressing this

Maddison 1997
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Gene Duplication
One solution: Just avoid the problem altogether 

This may often be the best option 

For well characterized genes, focus on known single copy 
genes 

More problematic with large genome scale datasets 

Need to be careful about automated homology 
assignment 

There are some methods to accommodate this 

Tend to be motivated by parsimony
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Gene Tree Parsimony
input a collection of rooted gene trees, find the species tree 
that minimizes the reconciliation cost 

reconciliation cost is number of duplications, or 
duplications and losses, summed across gene trees
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Gene Tree Parsimony

AB

C D

example gene tree: 
 
 
 
 
 

calculate reconciliation costs for species trees

101

Gene Tree Parsimony

xxxx

Reconciliation score = 5

A B C D
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Gene Tree Parsimony

xx

Reconciliation score = 4

x

A B C D
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Gene Tree Parsimony

Reconciliation score = 0

A D C B
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Empirical Example
Sanderson and McMahon 2007 

GTP analysis of 576 gene trees for 6 angiosperm species (plus 
outgroup) 

 known species tree recovered successfully despite massive gene 
duplication
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Gene Tree Parsimony

small trees - Gtp (Sanderson and McMahon 2007) 

large trees - DupTree (Wehe et al 2008)

106

Statistical Approaches
Likelihood methods for inferring gene trees and duplication and 
loss history given a species tree have existed for some time 

Until recently, no methods available to do the joint inference
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Incomplete coalescence  

!

Horizontal transfer 

!

Gene duplication

Sources of gene tree variation
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Sources of gene tree variation

arXiv: 1311.0651v1
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Wrapping up
Some thoughts: 

There are several options here, you should carefully 
choose a model based on biological knowledge 

Need for more simulation studies 

Sensitivities to priors and demographic functions 

Data needs are substantial
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*BEAST - dataset design

Heled and Drummond 2010
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Difficulties

Often making some strong assumptions: 

changes or constancy of population size 

species membership and assignments 

sources of gene tree variation 

Not always well known how robust it is to deviations 
from the correct model
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Coalescent model plausibility

Reid et al. 2013
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the end
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