
Phylogenetic Inference using MrBayes v3.2

Overview

MrBayes is a software program for inferring phylogenetic parameters in a Bayesian statistical framework
(Huelsenbeck and Ronquist, 2001; 2005; Ronquist et al., 2012). This program relies on the Markov chain
Monte Carlo (MCMC) numerical method to approximate the joint posterior probability distribution of
model parameters (Metropolis et al., 1953; Hastings, 1970). The current version, v3.2, allows you to
perform several different types of analyses:

• Topological and branch-length inference of partitioned alignments comprising different data types
under a range of site-evolution models:

DNA: 4x4 nucleotide model, 16x16 doublet model, 61x61 codon model

Restriction: 0/1 state model (used for any binary-type data including indel coding and 2-state
morphological characters)

Standard: 0–9 state model for standard, discrete morphological characters

Protein: A–Y amino acid data under either fixed-rate or variable rate models

• Ancestral-state estimation

• Divergence-time estimation under strict and relaxed-clock models, including analysis of serially sam-
pled taxa

• Gene-tree/species-tree inference under the multi-species coalescent model (based on the method de-
scribed by Liu and Pearl, 2007)

• Model averaging over the GTR family of models using reversible-jump MCMC (rjMCMC)

• Model selection using Bayes factors (comparing marginal likelihoods for competing models)

This tutorial demonstrates two types of analyses that might be required for a typical empirical study.
Specifically, we will demonstrate how to use MrBayes v3.2 to perform the following analyses:

1. Setting up and selecting among partition schemes (mixed models) using stepping-stone sampling

2. Performing model averaging over members of the GTR substitution model family using rjMCMC

Each exercise will work through the series of commands required to perform the analyses interactively
from the command line, and will conclude with the equivalent batch of commands required to perform the
analyses in batch mode. MrBayes relies on the NEXUS file format for specifying the data alignment and
program-specific commands. The batch files and data alignment are in this format.
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Getting Started

This tutorial assumes that you have already downloaded, compiled, and installed MrBayes v3.2 (Ronquist
et al., 2012). We also recommend that—if you are working on a Unix machine—you put the mb binary in
your path.

For the exercises outlined in this tutorial, we will use MrBayes interactively by typing commands in the
command-line program. The format of this exercise uses text bullets (•) to delineate important steps.
The various MrBayes commands are specified using typewriter text. And the specific commands that
you should type (or copy/paste) into MrBayes are indicated by the text bullet and prompt. For example,
after opening the MrBayes program, you can execute your data file:

• MrBayes > execute data-file.nex

For this command, type in the command and its options: execute data-file.nex. DO NOT type in
“MrBayes >”, the prompt is included simply included to replicate what you see on your screen.

This tutorial also includes hyperlinks: bibliographic citations are burnt orange and link to the full citation
in the references, external URLs are cerulean, and internal references to figures and equations are purple.

The various exercises in this tutorial take you through the steps required to perform phylogenetic analyses
of the example datasets. In addition, we have provided the output files for every exercise so you can verify
your results. (Note that since the MCMC runs you perform will start from different random seeds, the
output files resulting from your analyses will not be identical to the ones we provide you.)

• Download data and output files from: http://treethinkers.org/phylogenetic-inference-using-mrbayes-v3-2/

1 Model Selection & Partitioning using Bayes Factors

Variation in the evolutionary process across the sites of nucleotide sequence alignments is well established,
and is an increasingly pervasive feature of datasets composed of gene regions sampled from multiple loci
and/or different genomes. Inference of phylogeny from these data demands that we adequately model the
underlying process heterogeneity; failure to do so can lead to biased estimates of phylogeny and other
parameters (Brown and Lemmon, 2007). To accommodate process heterogeneity within and/or between
various gene(omic) regions, we will evaluate the support for various partition schemes using Bayes factors
to compare the marginal likelihoods of the candidate partition schemes.

Accounting for process heterogeneity involves adopting a ‘mixed-model’ approach, (Ronquist and Huelsen-
beck, 2003) in which the sequence alignment is first parsed into a number of partitions that are intended to
capture plausible process heterogeneity within the data. The determination of the partitioning scheme is
guided by biological considerations regarding the dataset at hand. For example, we might wish to evaluate
possible variation in the evolutionary process within a single gene region (e.g., between stem and loop
regions of ribosomal sequences), or among gene regions in a concatenated alignment (e.g., comprising mul-
tiple nuclear loci and/or gene regions sampled from different genomes). The choice of partitioning scheme
is up to the investigator and many possible partitions might be considered for a typical dataset.

Next, a substitution model is specified for each predefined process partition (using a given model-selection
criterion, such as Bayes factors, the hierarchical likelihood ratio test, or the Akaike information criterion).
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This results in a composite model, in which all sites are assumed to share a common tree topology,
denoted τ , and proportional branch lengths, ν, but subsets of sites (‘data partitions’) are assumed to
have independent substitution model parameters (e.g., for the relative substitution rates, θij, stationary
frequencies, πi, degree of gamma-distributed among-site rate variation, α, etc.). This composite model is
referred to as a mixed model.

Finally, we perform a separate MCMC simulation to approximate the joint posterior probability density of
the phylogeny and other parameters. Note that, in this approach, the mixed model is a fixed assumption
of the inference (i.e., the parameter estimates are conditioned on the specified mixed model), and the
parameters for each process partition are independently estimated.

For most sequence alignments, several (possibly many) partition schemes of varying complexity are plau-
sible a priori, which therefore requires a way to objectively identify the partition scheme that balances
estimation bias and error variance associated with under- and over-parameterized mixed models, respec-
tively. Increasingly, mixed-model selection is based on Bayes factors (e.g., Suchard, Weiss and Sinsheimer,
2001), which involves first calculating the marginal likelihood under each candidate partition scheme and
then comparing the ratio of the marginal likelihoods for the set of candidate partition schemes (Brandley,
Schmitz and Reeder, 2005; Nylander et al., 2004; McGuire et al., 2007). The analysis pipeline that we will
use in this tutorial is depicted in Figure 1.

Given two models, M0 and M1, the Bayes factor comparison assessing the relative plausibility of each
model as an explanation of the data, BF (M0, M1), is:

BF (M0, M1) =
posterior odds

prior odds
.

The posterior odds is the posterior probability of M0 given the data, X, divided by the posterior odds of
M1 given the data:

posterior odds =
P(M0 | X)

P(M1 | X)
,

and the prior odds is the prior probability of M0 divided by the prior probability of M1:

prior odds =
P(M0)

P(M1)
.

Thus, the Bayes factor measures the degree to which the data alter our belief regarding the support for
M0 relative to M1 (Lavine and Schervish, 1999):

BF (M0, M1) =
P(M0 | X, θ0)

P(M1 | X, θ1)
÷

P(M0)

P(M1)
. (1)

This, somewhat vague, definition does not lead to clear-cut identification of the “best” model. Instead,
you must decide the degree of your belief in M0 relative to M1. Despite the absence of any strict “rule-of-
thumb”, you can refer to the scale (outlined by Jeffreys, 1961) for interpreting these measures (Table 1).

Unfortunately, direct calculation of the posterior odds to prior odds ratio is unfeasible for most phylogenetic
models. However, we can further define the posterior odds ratio as:

P(M0 | X)

P(M1 | X)
=

P(M0)

P(M1)

P(X | M0)

P(X | M1)
,
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Figure 1: The analysis pipeline for Exercise 1. We will explore three partition schemes for the conifer dataset.
The first model (the ‘uniform model’, M0) assumes that all sites evolved under a common GTR+Γ substitution
model. The second model (the ‘moderately partitioned’ model, M1) invokes two data partitions corresponding to the
two gene regions (atpB and rbcL), and assumes each subset of sites evolved under an independent GTR+Γ model,
each with its own rate multiplier, µ. The final mixed model (the ‘highly partitioned’ model, M2) invokes four data
partitions—the first partition corresponds to the atpB gene region, and the remaining partitions correspond to the
three codon positons of the rbcL gene region—and each data partition is assumed evolved under an independent
GTR+Γ substitution model. Note that we assume that all sites share a common tree topology, τ , and branch-length
proportions, ν, for each of the candidate partition schemes. We perform two separate sets of analyses for each
mixed model—a Metropolis-coupled MCMC simulation to approximate the joint posterior probability density of the
mixed-model parameters, and a ‘stepping-stone’ MCMC simulation to approximate the marginal likelihood for each
mixed model. The resulting marginal-likelihood estimates are then evaluated using Bayes factors to assess the fit of
the data to the three candidate mixed models.

where P(X | Mi) is the marginal likelihood of the data marginalized over all parameters for Mi; it is also
referred to as the model evidence or integrated likelihood. More explicitly, the marginal likelihood is the
probability of the set of observed data (X) under a given model (Mi), while averaging over all possible
values of the parameters of the model (θi) with respect to the prior density on θi

P(X | Mi) =

∫

P(X | θi)P(θi)dt. (2)

If you refer back to equation 1, you can see that, with very little algebra, the ratio of marginal likelihoods
is equal to the Bayes factor:

BF (M0, M1) =
P(X | M0)

P(X | M1)
=

P(M0 | X, θ0)

P(M1 | X, θ1)
÷

P(M0)

P(M1)
. (3)

Therefore, we can perform a Bayes factor comparison of two models by calculating the marginal likelihood
for each one. Alas, exact solutions for calculating marginal likelihoods are not known for phylogenetic
models (see equation 2), thus we must resort to numerical integration methods to estimate or approximate
these values. In this exercise, we will estimate the marginal likelihood for each partition scheme using both
the harmonic-mean (unreliable) and stepping-stone (preferable) estimators.
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Table 1: The scale for interpreting Bayes factors by Harold Jeffreys (1961).

BF (M0, M1) Strength of evidence

< 1 : 1 Negative (supports M1)
1 : 1 to 3 : 1 Barely worth mentioning
3 : 1 to 10 : 1 Substantial
10 : 1 to 30 : 1 Strong
30 : 1 to 100 : 1 Very strong
> 100 : 1 Decisive

For a detailed description of Bayes factors see Kass and Raftery (1995)

• Open the file conifer_dna.nex in your text editor. This file contains the sequences for 2 different
genes sampled from 9 species (Box 1). The elements of the DATA block indicate the type of data,
number of taxa, and length of the sequences.

#NEXUS

BEGIN DATA;

DIMENSIONS NTAX=9 NCHAR=2659;

FORMAT DATATYPE = DNA GAP = - MISSING = ? INTERLEAVE;

MATRIX

[ATPB]
Ginkgo_biloba TTATTGGTCCAGTACTGGATGTAGCTTTTCCCCCGGG...

Araucaria_araucana ––-GGTCCGGTACTGGATGTATCTTTTCCTCCAGA...

Cedrus_deodara TCATTGGCCCAGTACTGGA?GTCTCTTTTCCTCCAGG...

Cupressus_arizonica ––––––––-GATGTATCTTTCCCTCCAGG...

Juniperus_communis ––––––––––––––––––-...

Pinus_densiflora TCATTGGCCCAGTACTGGATGTCTCTTTTCCTCCAGG...

Podocarpus_chinensis TCATCGGCCCTGTACTGGATGTATCTTTTCCTCCAGA...

Sciadopitys_verticillata TCATTGGTCCAGTACTAGATGTATCTTTCCCTCCAGG...

Taxus_baccata TTATCGGCCCAGTACTAGATGTCTCTTTTCCTCCAGG...

[RBCL]
Ginkgo_biloba ATGGATAAGTT–––––––––AAAGAG...

Araucaria_araucana ATAGATTAACTACTCCGCAATATCAGACCAAAGAT...

Cedrus_deodara ACAGATTAACTACTCCTGAATATCAGACCAAAGAT...

Cupressus_arizonica ––ATTAACTACTCCGGAATATCAGACCAAAGAT...

Juniperus_communis ACAGATTAACTACTCCGGAATATCAGACAAAAGAT...

Pinus_densiflora ACAGATTAACTACTCCTGAATATCAGACCAAAGAT...

Podocarpus_chinensis ACAGATTAACTACTCCGGAATATCAGACCAAAGAT...

Sciadopitys_verticillata ACAGATTAACTACCCCTGAATATCAGACCAAAGAC...

Taxus_baccata ACAGACTAACTACTCCACAATATCAGACCAAAGAT...

;

END;

Box 1: A fragment of the NEXUS file containing the sequences for this exercise.

• Open the batch file, conifer_partn.nex, in a text editor. This file contains all of the commands
required to perform the necessary analyses to explore various partition schemes (unpartitioned, parti-
tioned by gene region, and partitioned by gene region+codon position). The details of each command
are described in adjacent comments, surrounded in brackets; e.g., [this is a comment].

Typically, we would perform these analyses by simply executing this batch file. For the purposes of this
exercise, however, we will walk through the different steps interactively in the command line.
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Load the Sequences & Specify the Outgroup

Execute the MrBayes binary. If this program is in your path, then you can simply type in your Unix
terminal:

• > mb

When you execute the program, you will see the program information, including the current version number
and commands that will provide information about the history and main authors of the program (about

and acknowledgments) and a command reference help. Execute the help function by typing:

• MrBayes > help

This displays a list of the different elements and commands available in MrBayes. The help command also
provides more detailed information about each of these items.

For example, we can view the help information about the log command:

• MrBayes > help log

The log command allows you to save all of the screen output from your analysis to a log file. The help

information for this command displays all of the available options for specifying screen logging. We are
going to log our screen output to a file called conifer-partn-log.txt.

• MrBayes > log start filename=conifer-partn-log.txt

Next, load the sequences into the program using the execute command.

• MrBayes > execute conifer_dna.nex

Now that MrBayes has read in our data, we can define our outgroup taxon. Unless a clock-based analysis
is specified, MrBayes v3.2 infers unrooted trees, however trees are written to output files as rooted trees
(unrooted trees are not phylogenies as they do not specify a temporal direction). Accordingly, this command
specifies how we would like our trees written to file. If we do not specify an outgroup, the trees will be
rooted on the first species in the data matrix by default.

• MrBayes > outgroup Ginkgo_biloba

1.1 An Unpartitioned Analysis

The first analysis in this exercise involves performing an analysis on our unpartitioned alignment. This
corresponds to the assumption that the process that gave rise to our data was homogeneous across all
sites of the alignment. Specifically, we will assume that both genes evolved under the same GTR+Γ model
(Fig. 1). The lset command is used to specify the details of our sequence model.

• MrBayes > lset nst=6 rates=gamma

This command specifies a substitution matrix with six relative substitution rates (GTR) with gamma-
distributed rate variation across sites. Because models are specified this way, it is apparent that some
types of DNA models are not available in MrBayes. Thus, with the nst element of the lset command,
we can specify the JC69 or F81 models (nst=1), the K2P or HKY models (nst=2), or the GTR model
(nst=6).
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The Bayesian perspective views parameters as random variables, which requires that we specify a prior
probability density that describes the precise nature of that random variation. Accordingly, we need to
specify priors for all of the parameters of the specified nucleotide substitution model. The command for
modifying priors is the prset command.

Use the help command to view the list of priors available for modification:

• MrBayes > help prset

First, we will parameterize a flat Dirichlet prior on the 6 exchangeability parameters.

• MrBayes > prset revmatpr=dirichlet(1,1,1,1,1,1)

The Dirichlet distribution assigns probability densities to grouped parameters: e.g., those that measure
proportions and must sum to 1. Above, we specified a 6-parameter Dirichlet prior on the relative rates
of the GTR model, where the placement of each value specified represents one of the 6 relative rates: (1)
A ⇆ C, (2) A ⇆ G, (3) A ⇆ T , (4) C ⇆ G, (5) C ⇆ T , (6) G ⇆ T . The input parameters of a
Dirichlet distribution are called shape parameters or concentration parameters and a value is specified for
each of the 6 GTR rates. The expectation and variance for each variable are related to the sum of the
shape parameters. The prior above is a ‘flat’ or symmetric Dirichlet since all of the shape parameters
are equal (1,1,1,1,1,1), thus we are specifying a model that allows for equal rates of change between
nucleotides, such that the expected rate for each is equal to 1

6 (Zwickl and Holder, 2004). Figure 2a
shows the probability density of each rate under this model. If we parameterized the Dirichlet distribution
such that all of the parameters were equal to 100, this would also specify a prior with an expectation
of equal exchangeability rates (Figure 2b). However, by increasing the shape parameters of the Dirichlet
distribution, dirichlet(100,100,100,100,100,100), would heavily restrict the MCMC from sampling
sets of GTR rates in which the values were not equal or very nearly equal (i.e., this is a very informative

prior). We can consider a different Dirichlet parameterization if we had strong prior belief that transitions
and transversions occurred at different rates. In this case, we could specify a more informative prior density:
dirichlet(4,8,4,4,8,4). Under this model, the expected rate for transversions would be 4

32 and the
expected rate for transitions would equal 8

32 , and there would be greater prior probability on sets of GTR
rates that matched this configuration (Figure 2c). An alternative informative prior would be one where
we assumed that each of the 6 GTR rates had a different value conforming to a Dirichlet(2,4,6,8,10,12).
This would lead to a different prior probability density for each rate parameter (Figure 2d). Without
strong prior knowledge about the pattern of relative rates, however, we can better capture our statistical
uncertainty with a vague prior on the GTR rates. Notably, all patterns of relative rates have the same
probability under dirichlet(1,1,1,1,1,1).

We can use the same type of distribution as a prior on the 4 base frequencies (πA, πC , πG, πT ) since these
parameters also represent proportions. Specify a flat Dirichlet prior density on the base frequencies:

• MrBayes > prset statefreqpr=dirichlet(1,1,1,1)

When we specified our model with the lset command, we also indicated that the substitution rates varied
among sites according to a gamma distribution, which has two parameters: the shape parameter, α, and
the scale parameter, β. In order that we can interpret the branch lengths as the expected number of
substitutions per site, this model assumes that the mean site rate is equal to 1. The mean of the gamma
is equal to α/β, so a mean-one gamma is specified by setting the two parameters to be equal, α = β.
Therefore, we need only consider the single shape parameter, α (Yang, 1994). The degree of among-site
substitution rate variation (ASRV) is inversely proportional to the value of the shape parameter—as the
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Figure 2: Four different examples of Dirichlet priors on exchangeability rates.

value of α-shape parameter increases, the gamma distribution increasingly resembles a normal distribution
with decreasing variance, which corresponds to decreasing levels of ASRV (Figure 3). If α = 1, then the
gamma distribution collapses to an exponential distribution with a rate parameter equal to β. By contrast,
when the value of the α-shape parameter is < 1, the gamma distribution assumes a concave distribution
that places most of the prior density on low rates but allows some prior mass on sites with very high rates,
which corresponds to high levels of ASRV (Figure 3).

Alternatively, we might not have good prior knowledge about the variance in site rates, thus we can place
an uninformative, or diffuse prior on the shape parameter. For this analysis, we will use an exponential
distribution with a rate parameter, λ, equal to 0.05. Under an exponential prior, we are placing non-zero
probability on values of α ranging from 0 to ∞. The rate parameter, λ, of the exponential distribution
controls both the mean and variance of this prior such that the expected (or mean) value of α is:

E[α] =
1

λ
.

Thus, if we set λ = 0.05, then E[α] = 20. The gamma shape parameter is called shapepr in the prset

command.
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• MrBayes > prset shapepr=exponential(0.05)
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Figure 3: The probability density of mean-one gamma-distributed rates under different shape parameters.

Now we have specified a simple, single-partition analysis—each parameter of the model will be estimated
from every site in our alignment. We can review the various model settings and parameters that we have
specified for this dataset using the showmodel command.

• MrBayes > showmodel

This provides a summary of the parameters of your model and all of the priors and their hyperparameters
that you have specified (in Bayesian inference the parameter characterizing a prior distribution is called a
hyperparameter to distinguish them from parameters directly involved in the likelihood function).

Now we are ready to set up the details of the MCMC. In MrBayes, one can specify the details of the MCMC
simulation using either the mcmcp or mcmc commands. The first command, mcmcp, reads in the settings—
the number of iterations, file names, number of runs, number of chains, etc.—for the MCMC simulation,
but does not initiate the MCMC analysis. By contrast, the mcmc command reads in the settings and then
immediately initiates the run. Thus, when working interactively with MrBayes, it is recommended that
you first set up the MCMC using mcmcp. Begin by setting the chain length (ngen) and the frequency that
states are saved to file (samplefreq) and printed to screen (printfreq).

• MrBayes > mcmcp ngen=300000 printfreq=100 samplefreq=100

We will use Metropolis-coupled MCMC (often called MC3; Geyer, 1991) for our analysis and we can set
the number of chains using the nchains option. Also, since we wish to monitor branch-length information
as well as the topological states sampled by the chain, indicate this in the mcmcp settings.

• MrBayes > mcmcp nchains=4 savebrlens=yes

During our run, we can monitor statistics that will help us assess whether the independent runs have
converged on the same stationary distribution. For this analysis, use the maximum standard deviation of
split frequencies (maxstddev) and perform that diagnostic every diagnfreq=1000 steps.

• MrBayes > mcmcp nruns=2 diagnfreq=1000 diagnstat=maxstddev
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Finally, we can set the output file-name stem (it is the ‘base’ to which various suffixes will be appended
for the various types of output files). Set the file-name prefix to conifer-uniform, so that the output
files will be saved as conifer-uniform.run1.p, conifer-uniform.run2.p, conifer-uniform.run2.t,
conifer-uniform.run2.t, etc.

• MrBayes > mcmcp filename=conifer-uniform

Once you have specified all of the MCMC settings, execute the Markov chain with the mcmc command.

• MrBayes > mcmc

Depending on your computer, the runs should complete in a few minutes (it’s not strictly a race, but
feel free to wager with your neighbors). When running interactively, MrBayes will give you the option to
continue sampling once the chain has reached ngen iterations:

• Continue with analysis? (yes/no): no

This is the million-dollar question! In theory, a properly constructed MCMC algorithm is guaranteed to
provide a precise description of the joint posterior probability density IF it is run for an infinite number
of cycles; and an adequate approximation of the posterior distribution can be generated after a sufficient

number of iterations. The question is whether the length of this particular analysis—to infer parameters
of this particular phylogenetic model from this particular dataset—is sufficient or insufficient.

We base this decision on diagnostic tools designed to detect when the MCMC simulation has failed to
adequately approximate the joint posterior probability density. There are many diagnostics tools at our
disposal, and you should use them judiciously if you are a good person (e.g., Nylander et al., 2008; Rambaut
and Drummond, 2009). One such tool is the maximum standard deviation of split frequencies diagnostic.
Let’s take a moment to understand how this diagnostic works.

Convergence is an important aspect of MCMC performance: essentially, we wish to know whether the
chain has targeted the stationary distribution (the joint posterior probability density of parameters that
we are attempting to approximate). One approach for assessing convergence is to compare samples from
multiple, independent chains that have been initiated from random starting points in the joint posterior
probability density. Initially, samples from these chains will be quite disparate (because the chains were
initiated from different points in parameter space), but are expected to become increasingly similar as
the chains converge to the stationary distribution. This is the gist of the maximum standard deviation
of split frequencies diagnostic: it monitors the topological similarity of trees sampled by two (or more)
independent chains.

The rationale of the maxstddev and ASDSF diagnostics is quite simple. A low standard deviation indicates
that the data points (split frequencies) tend to be close to the mean, suggesting that the trees sampled
by the independent chains are similar and presumably sampled from the same (stationary) distribution.
By contrast, high values of the standard deviation indicates that the data points (split frequencies) tend
to deviate greatly from the mean, suggesting that the trees sampled by the independent chains are quite
different and presumably not sampled from the same (stationary) distribution.

When running remote jobs, you can always specify very large chain lengths since it is far easier to inter-
mittently monitor your runs and terminate those that are mixing well and have converged. Since we don’t
have that much time, terminate the Markov chain after 300,000 iterations for this exercise.
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We are interested in comparing the marginal likelihood of the unpartitioned analysis to other partition
configurations of our alignment using Bayes factors. This step requires a second analysis using stepping-
stone sampling (Xie et al., 2011; Fan et al., 2011). Specify the parameters of the stepping-stone run using
the ssp command.

• MrBayes > ssp ngen=100000 diagnfreq=1000 filename=conifer-uniform-ss

Now execute the stepping-stone analysis.

• MrBayes > ss

MrBayes is now running an MCMC simulation that steps from the joint posterior probability density to
the joint prior probability density of parameters in order to estimate the marginal likelihood, which we
can use later to compare the unpartitioned mixed model to the alternative partition schemes.

• Once the stepping-stone sampling run has completed, the estimated stepping-stone marginal likeli-
hood for the uniform partition is reported to the screen. Record the Mean marginal likelihood for
the 2 runs.

1.2 Partitioning by Gene Region

The uniform model used in the previous section assumes that all sites in the alignment evolved under
the same process described by a shared tree, branch length proportions, and parameters of the GTR+Γ
substitution model. However, our alignment contains two distinct gene regions—atpB and rbcL—so we
may wish to explore the possibility that the substitution process differs between these two gene regions.
This requires that we first specify the data partitions corresponding to these two genes, then define an
independent substitution model for each data partition.

In MrBayes, we can define the subset of sites belonging to each of the gene regions using the charset

command. Indicate sites 1–1,394 belong to the atpB gene and sites 1,395–2,659 are from rbcL:

• MrBayes > charset atpB = 1-1394

• MrBayes > charset rbcL = 1395-2659

In the next step, we can define our partition configuration using the partition command.

• MrBayes > partition partition-by-gene = 2: atpB, rbcL

Here, we have created a data partition called partition-by-gene that contains two subsets of sites within
our alignment. Next, set the partition scheme to partition-by-gene.

• MrBayes > set partition=partition-by-gene

For these two genes, we are assuming that both evolved under a GTR+Γ model. By separating them and
partitioning by gene, we are specifying that the substitution-model parameters are independent for each
gene. Thus, atpB evolved under a GTR+Γ model with its own set of base frequencies, exchangeability
rates, and gamma shape parameter; and rbcL evolved under another GTR+Γ model with a different set
of base frequencies, exchangeability rates, and gamma shape parameter. First, use the lset command to
indicate the type of sequence model for each gene. The applyto option specifies that we are assuming the
same model type for each gene.

11



MrBayes v3.2 Tutorial

• MrBayes > lset applyto=(all) nst=6 rates=gamma

As in the first part of this exercise, we can also specify the priors.

• MrBayes > prset revmatpr=dirichlet(1,1,1,1,1,1) statefreqpr=dirichlet(1,1,1,1)

• MrBayes > prset shapepr=exponential(0.05)

At this point, the parameters for each gene are linked, and if we ran the MCMC under these settings, we
would be performing an unpartitioned analysis. We must now unlink the parameters for each gene so that
they will be estimated independently.

• MrBayes > unlink revmat=(all) statefreq=(all) shape = (all)

Now, each gene has a set of partition-specific parameters. Next, we must allow the overall substitution
rate to vary across the subsets of our alignment. This is done using the prset command.

• MrBayes > prset applyto=(all) ratepr=variable

We are now ready to set up the MCMC and run our chains. Start by using the mcmcp command to set
the values of our MCMC options. (Notice that you can abbreviate commands, provided that they are still
unique.)

• MrBayes > mcmcp ng=300000 printf=100 samp=100 diagnf=1000 diagnst=maxstddev

• MrBayes > mcmcp nch=4 savebr=yes filename=conifer-partn

Execute the Markov chain with the mcmc command:

• MrBayes > mcmc

Do not continue this Markov chain when it reaches 300,000 generations (for the sake of time).

• Continue with analysis? (yes/no): no

Since we will compare the partitioned analysis to the unpartitioned run, we need to approximate the
marginal likelihood of this model specification. Set up and execute a stepping-stone analysis using the ss

command.

• MrBayes > ss ng=100000 diagnfr=1000 filename=conifer-partn-ss

MrBayes will now run an MCMC simulation that steps from the joint posterior probability density to the
joint prior probability density of parameters in order to estimate the marginal likelihood, which we can
use later to compare the unpartitioned mixed model to the alternative partition schemes.

• Once the stepping-stone sampling run has completed, the estimated stepping-stone marginal like-
lihood for the partitioned-by-gene analysis is reported to the screen. Record the Mean marginal
likelihood for the 2 runs.

12
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1.3 Partitioning by Codon Position and by Gene

Because of the genetic code, we often find that different positions within a codon (first, second, and third)
evolve at different rates. Thus, using our knowledge of biological data, we can devise a third approach that
further partitions our alignment. For this exercise, we will partition sites within the rbcL gene by codon
position.

The genes in our alignment each start at position 1 (i.e. they are in frame). When defining a charset we
can specify the different positions using specific notation indicating that every third base-pair belongs in
a given charset.

• MrBayes > charset rbcL1stpos = 1395-2659\3

• MrBayes > charset rbcL2ndpos = 1396-2659\3

• MrBayes > charset rbcL3rdpos = 1397-2659\3

Notice that each charset begins with a different character position in our alignment. This shifts the 3-base
frame so that the proper sites are included in each character set.

Now we will specify four different subsets of the alignment: the entire atpB gene, rbcL 1st positions, rbcL
2nd positions, and rbcL 3rd positions.

• MrBayes > partition sat-partition = 4: atpB, rbcL1stpos, rbcL2ndpos, rbcL3rdpos

• MrBayes > set partition=sat-partition

For this exercise, we will again assume a GTR+Γ model for every character set, but unlink the parameters
across our subsets.

• MrBayes > lset applyto=(all) nst=6 rates=gamma

• MrBayes > prset revm=dir(1,1,1,1,1,1) statef=dir(1,1,1,1) shape=expon(0.05)

• MrBayes > unlink revmat=(all) statef=(all) shape=(all)

• MrBayes > prset applyto=(all) ratepr=variable

We set up the MCMC and run our chains as described for the previous models. Start by using the mcmcp

command to set the values of our MCMC parameters.

• MrBayes > mcmcp ng=300000 printf=100 samp=100 diagnf=1000 diagnst=maxstddev

• MrBayes > mcmcp nch=4 savebr=yes filename=conifer-sat-partn

Execute the Markov chain with the mcmc command:

• MrBayes > mcmc

Do not continue this Markov chain when it reaches 300,000 generations (ideally, we would run this much
longer).

• Continue with analysis? (yes/no): no

13
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Although there is evidence that the MCMC has not yet provided an adequate sample of the joint posterior
probability density of parameters, because time is short, we will terminate terminate the analysis.

As for the previous mixed models, we will next approximate the marginal likelihood of this mixed model
specification. Set up and execute a stepping-stone analysis using the ss command.

• MrBayes > ss ng=100000 diagnfr=1000 filename=conifer-sat-partn-ss

• Once the stepping-stone sampling run has completed, the estimated stepping-stone marginal like-
lihood for the highly partitioned analysis is reported to the screen. Record the Mean marginal
likelihood for the 2 runs.

1.4 Summarize and Analyze

MrBayes has some built-in tools for summarizing MCMC samples of trees and other parameters. The
commands for performing these analyses are sumt and sump. The sumt command summarizes the samples
of the tree topology and branch lengths and sump summarizes all of the other model parameters (e.g. base
frequencies, shape parameter, etc.).

We will begin by assessing the scalar parameters sampled by MCMC for our 3 different analyses using the
sump command. By default this command will discard the first 25% of the samples as ‘burn-in’. Begin
with the uniform analysis:

• MrBayes > sump filename=conifer-uniform

Upon completion of the sump command, you will see a table listing the estimated marginal likelihoods of
these analyses.

• Record the marginal likelihood estimated by the harmonic mean for the uniform partition analysis.

• Review the table summarizing the MCMC samples of the various parameters. Notice that this table
contains the Mean, Median, Variance, etc.

This table also give the 95% credible interval of each parameter. This statistic approximates the 95%
highest posterior density (HPD) and is a measure of uncertainty while accounting for the data (MrBayes
labels this value as 95% HPD). More specifically, the probability that the true value of the parameter lies
within the credible interval is 0.95 given the model and the data.

• Continue summarizing the MC3 runs for the moderately partitioned run and the highly partitioned
run and record the Harmonic mean estimate of the marginal likelihood for each.

• MrBayes > sump filename=conifer-partn

• MrBayes > sump filename=conifer-sat-partn

Now that we have estimates of the marginal likelihood under each of our different models, we can evaluate
their relative plausibility using Bayes factors. Use Table 2 to summarize the marginal log-likelihoods
estimated using the harmonic mean and stepping-stone methods.

14
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Table 2: Estimated marginal likelihoods for different partition configurations∗.

Marginal lnL estimates

Partition Harmonic mean Stepping-stone

1.1 uniform (M1)

1.2 moderate (M2)

1.3 extreme (M3)
∗you can edit this table

Phylogenetics software programs log-transform the likelihood to avoid underflow, because multiplying
likelihoods results in numbers that are too small to be held in computer memory. Thus, we must use a
different form of equation 3 to calculate the ln-Bayes factor (we will denote this value K):

K = ln[BF (M0, M1)] = ln[P(X | M0)] − ln[P(X | M1)], (4)

where ln[P(X | M0)] is the marginal lnL estimate for model M0. The value resulting from equation 4 can
be converted to a raw Bayes factor by simply taking the exponent of K

BF (M0, M1) = eK. (5)

Alternatively, you can interpret the strength of evidence in favor of M0 using the K and skip equation 5.
In this case, we evaluate the K in favor of model M0 against model M1 so that:

if K > 1, then model M0 wins
if K < −1, then model M1 wins.

Thus, values of K around 0 indicate ambiguous support.

Using the values you entered in Table 2 and equation 4, calculate the ln-Bayes factors (using K) for the
different model comparisons. Enter your answers in Table 3 using the harmonic-mean and the stepping-
stone estimates of the marginal log likelihoods.

Table 3: Bayes factor calculation∗.

ln-Bayes Factor (K)
Model comparison Harmonic mean Stepping-stone

M1, M2

M2, M3

M1, M3

Supported model?
∗you can edit this table

Once you complete Table 3, you will notice that the Bayes factor comparison indicates strong evidence in
support of the highly partitioned model using both the harmonic mean and stepping-stone estimates of
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the marginal likelihoods. However, this does not mean that model M3 is the true partition model. We
only considered three out of the many, many possible partitions for 2,659 sites (the number of possible
partitions can be viewed if you compute the 2659th Bell number). Given the strength of support for the
highly partitioned model, it is possible that further partitioning is warranted for these data. In particular,
partitioning the dataset by codon position for both atpB and rbcL is an important next step for this
exercise (consider taking some time on your own to test this model).

Because of the computational costs of computing marginal likelihoods and the vast number of possible
partitioning strategies, it is not feasible to evaluate all of them. New methods based on nonparametric
Bayesian models have recently been applied to address this problem (Lartillot and Philippe, 2004; Huelsen-
beck and Suchard, 2007; Wu, Suchard and Drummond, 2013). These approaches use an infinite mixture
model (the Dirichlet process; Ferguson, 1973; Antoniak, 1974) that places non-zero probability on all of
the countably-infinite possible partitions for a set of sequences. Bayesian phylogenetic inference under
these models is implemented in the program PhyloBayes (Lartillot, Lepage and Blanquart, 2009) and the
subst-bma plug-in for BEAST2 (Wu, Suchard and Drummond, 2013).

Note that Bayes factors based on comparison of HM-based marginal likelihoods often strongly favor the
most extremely partitioned mixed model. In fact, the harmonic mean estimator has been shown to provide
unreliable estimates of marginal likelihoods, compared to more robust approaches (Lartillot and Philippe,
2006; Xie et al., 2011; Fan et al., 2011). Based on these studies, it is recommended that you avoid using
HM-derived marginal likelihoods for Bayes factor comparisons. (The Canadian Bayesian Radford Neal
says the harmonic mean is the “worst Monte Carlo method ever”.)

Next, summarize the tree topologies and branch lengths sampled by MCMC for each of the different
analyses. Begin with the uniform analysis:

• MrBayes > sumt filename=conifer-uniform

The primary summary performed by sumt calculates the clade credibility values (i.e., bipartition posterior
probabilities). These values are reported on an ASCII cladogram upon completion of the sumt command.

Continue summarizing the other two analyses:

• MrBayes > sumt filename=conifer-partn

• MrBayes > sumt filename=conifer-sat-partn

Then quit MrBayes:

• MrBayes > quit

The sumt command also writes the majority-rule consensus tree to a NEXUS tree file with the file-name
extension *.con.tre. The trees in these files are also annotated with various branch- or node-specific
parameters or statistics in an extended Newick format called NHX. We can use FigTree to visualize these
summary trees.

• Open the summary trees in FigTree: conifer-uniform.con.tre, conifer-partn.con.tre, and
conifer-sat-partn.con.tre.

• Use the tools on the side panel to display the posterior probabilities as node labels. An example is
shown in Figure 4.
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Figure 4: The summary tree from the uniform analysis, with posterior probabilities labeled at nodes.

Exercise 1 – Batch Mode

If you wish to run this exercise in batch mode, the files are provided for you. Open the file conifer_partn.nex

in your text editor. This NEXUS-formatted file contains a MrBayes block with all of the commands you
entered for exercise 1. The NEXUS command “BEGIN” specifies the type of block and all of the commands
within a MrBayes block are directions for the analysis. The MrBayes block is then terminated by “end;”.
When including commands in a NEXUS block, these lines must be terminated by a semicolon “;”. For
example, the first command we give the program is to log the screen output to file:

• log start filename=conifer-partn-log.txt;

You will notice that several of the commands that you entered separately above are combined into a single
command in the file:

• prset revmatpr=dirichlet(1,1,1,1,1,1)

statefreqpr=dirichlet(1,1,1,1)

shapepr=exponential(0.05);

The options for a single command, such as prset can span multiple lines as long as the last element is
followed by a “;”. Furthermore, we have annotated each element of the MrBayes commands with comments,
which are contained within square braces: [this is a comment].

The batch file allows you to save all of the commands for a single analysis and execute each command in
succession without typing them in the command line. When executed in MrBayes, this file will provide
the commands and MrBayes will execute each step of this exercise.

You can carry out these batch commands by providing the file name when you execute the mb binary in
your unix terminal (this will overwrite all of your existing run files).

• > mb conifer_partn.nex
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2 Averaging Over the GTR Family of Models

Model selection entails ranking a set of candidate models according to their relative fit to the data at hand.
An emerging convention in our field is to first assess the relative fit of our dataset to a pool of candidate
substitution models using maximum-likelihood based model-selection methods (e.g., the likelihood-ratio
test, AIC, BIC, etc.), and then proceed to estimate the phylogeny and other model parameters (via
maximum likelihood or Bayesian inference methods) under the chosen model.

Even if we have exhaustively evaluated all possible candidate models and accurately assessed the relative
fit of each model to a given dataset, it may nevertheless be unwise to condition our inference on the “best”
model. This relates to the issue of model uncertainty. Imagine, for example, that there are several (possibly
many) alternative models that provide a similarly good fit to a given dataset (Figure 5). In such scenarios,
conditioning inference on any single model (even the ‘best’) ignores uncertainty in the chosen model and
will cause estimates to be biased. This scenario is apt to become increasingly plausible as the size of the
candidate model pool continues to grow.

model index

Figure 5: The relative fit of a dataset, P(X | Mi), has been assessed for two sets of candidate models, Mi; the first
set includes five models (filled circles), the second set includes an additional 12 models (filled and open circles). In
the first scenario, it might seem reasonable to condition inference on M1, which has a substantially better fit (i.e.,
higher marginal likelihood) than the other four candidate models. In the second scenario, there are several models
that provide a similarly good fit to the data. Failure to accommodate this uncertainty in the choice of model may
lead to biased estimates.

Model uncertainty can be addressed by means of model averaging. The Bayesian framework provides a
more natural approach for accommodating model uncertainty; we simply adopt the perspective that the
models (like the parameters within each model) are themselves random variables.

Bayesian model averaging has been implemented for various phylogenetic problems using reversible-jump
MCMC, where the chain integrates over the joint prior probability density of a given model in the usual
manner, but also jumps between all possible candidate substitution models, visiting each model in propor-
tion to its marginal probability. An approach for using rjMCMC to average over the pool of substitution
models corresponding to all possible members of the GTR substitution model family was described by
Huelsenbeck, Larget and Alfaro (2004). Analyses of empirical datasets using the approach demonstrate
that the credible set typically contains many substitution models. Moreover, accommodating this source
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of uncertainty has been shown to impact parameters of interest, providing less biased estimates of the
topological variance and corresponding clade probabilities (Alfaro and Huelsenbeck, 2006). Here, we will
demonstrate how to use this approach using MrBayes.

We can determine the pool of candidate models that can be specified by evaluating all possible combinations
of the six exchangeability parameters, which is given by the Bell number (Bell, 1934). The Bell number
for n elements is the sum of the Stirling numbers of the second kind:

B(n) =
n
∑

k=1

S2(n, k).

The Stirling number of the second kind, S2(n, k), for n elements and k subsets (corresponding here to the
number of relative rates in the GTR matrix and unique rate values, respectively) is given by the following
equation:

S2(n, k) =
1

k!

k−1
∑

i=0

(−1)i

(

k

i

)

(k − i)n.

Thus, the number of ways we can partition the 6 parameters of the rate matrix equals: B(6) = 203. Hence,
the GTR family includes the 203 substitution models. Huelsenbeck, Larget and Alfaro (2004) defined and
indexed all of the models possible under this parameterization. The list of models can be found in their
table: http://mbe.oxfordjournals.org/content/21/6/1123/T1.expansion.html.

For this exercise, we will work in the MrBayes command line (batch files are also provided). Execute the
mb binary in your Unix terminal:

• > mb

Save the screen output to file:

• MrBayes > log start filename=conifer-rjmcmc-log.txt

We will use the 9-taxon conifer dataset (Box 1). Load the sequences into MrBayes:

• MrBayes > execute conifer_dna.nex

And specify Ginko biloba as the outgroup.

• MrBayes > outgroup Ginko_biloba

Specify the mixed model

In MrBayes, model averaging over the family of GTR models is specified using the lset command. Read
more details about this in the help documentation:

• MrBayes > help lset

Notice that the nst parameter can be set to Mixed. If you scroll up, this option is defined such that when
you specify lset nst=mixed, this “results in the Markov chain sampling over the space of all possible

reversible substitution models, including the GTR model and all models that can be derived from it by

grouping the six rates in various combinations. This includes all the named models above and a large

number of others, with or without name.” Thus when using reversible-jump MCMC, we are no longer
restricted to choosing a single, named substitution model (F81, HKY85, GTR).
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In the MrBayes software, the GTR family of models are given the parameter label gtrsubmodel[xxxxxx],
where the indices contained within the square braces represent the category assignment of each of the
exchangeability rates. Under this notation, the different named models and many other models can be
described. MrBayes uses rjMCMC to sample among the different models. This algorithm will average over
all 203 models in the GTR family in proportion to their marginal posterior probability, including
F81 (gtrsubmodel[111111]), HKY85 (gtrsubmodel[121121]), and GTR (gtrsubmodel[123456]).

Specify model averaging over GTR rates and gamma-distributed rate heterogeneity:

• MrBayes > lset nst=mixed rates=gamma

We will leave the remaining parameters and priors specified to the program default values. Evaluate your
model specification:

• MrBayes > showmodel

Running under the prior

For every Bayesian analysis, it’s critical to examine the various priors specified and identify induced priors
that may result from interactions between parameters. This procedure is done by generating samples of
the various parameters and hyperparameters under the prior, without accounting for the data. This is also
often called “running on empty”. Essentially, you use MCMC to simulate under the prior, and this allows
you to inspect the marginal distributions of the parameters.

In MrBayes, running under the prior is specified in the mcmc/mcmcp command by the option data=no.
When generating samples under the prior with MCMC, the only important concern is that you have a
sufficient number. Therefore, it is not necessary to run multiple chains or multiple independent runs.

Use the mcmcp command to specify the details of the Markov chain.

• MrBayes > mcmcp data=no nruns=1 nchains=1

When you set data=no, the program simply disregards the sequence data by returning a constant (0.0)
every time the likelihood function is called. Accordingly, running on empty takes very little time.

Set the number of generations equal to 2,000,000 using the mcmcp command.

• MrBayes > mcmcp ngen=2000000 printfreq=100 samplefreq=100

You are ready to run the analysis. Set the file name prefix to conifer-rjmcmc-prior when you execute
the mcmc command:

• MrBayes > mcmc filename=conifer-rjmcmc-prior

Tracer (Rambaut and Drummond, 2009) is an excellent program for examining marginal prior and posterior
densities for Bayesian phylogenetic analysis. Evaluating the parameter samples under the prior can often
help to identify misspecified priors or errors in your analysis set-up. When examining prior densities, we
are only concerned with the values reported to the parameter file (*.p).

• Open the file called conifer-rjmcmc-prior.p in Tracer. You may have to open a new terminal
window and execute the tracer binary:

> tracer conifer-rjmcmc-prior.p

20



MrBayes v3.2 Tutorial

You will notice that the plots for the likelihood (LnL) are not informative. This is because, when running
MCMC without data, the likelihood is 0. You can disregard this statistic since we are just interested
in the marginal distributions of monitored numerical parameters. The goal when evaluating priors is to
ensure that their shapes meet our expectations and that all of the model parameters are accounted for
(often, if you accidentally specify the wrong model, you will discover it here–e.g. if you set nst=2 instead
of nst=mixed, you would have a different set of parameters).

• Look through each of the parameters, paying close attention to the shapes of the distributions in the
Marginal Density pane.

• Inspect the marginal densities of the relative exchangeability rates. Under this prior, the rates are
sampled from a mixture of distributions, thus these look unlike any obvious parametric density.

For this exercise, we are primarily interested in the variables relevant to the mixed model over GTR
submodels. These include gtrsubmodel and k_revmat. The k_revmat statistic indicates the number of
unique rate values in the GTR matrix.

• Select k_revmat in Tracer and observe the histogram of the prior distribution in the Estimates

window.

• Refer back to Table 1 of Huelsenbeck, Larget and Alfaro (2004) and Table 4 below, both show the
distribution of the number of rates across the different GTR submodels. The prior mean number of
rate categories is k_revmat = 3.320197. When using MCMC to sample without data, the k_revmat

prior distribution in Tracer should (approximately) match the expected distribution.

Table 4: The distribution of the number of rate parameters across the 203 GTR submodels.

Number of rates Number of models

k_revmat = 1 1
k_revmat = 2 31
k_revmat = 3 90
k_revmat = 4 65
k_revmat = 5 15
k_revmat = 6 1

The trace called gtrsubmodel gives the model in the GTR family sampled by MCMC. The value is
determined by the indices in Table 1 of Huelsenbeck, Larget and Alfaro (2004).

• Select gtrsubmodel in Traces and examine the prior distribution of this parameter in the Estimates

window. The mixed model assumes that all of the 203 GTR submodels have equal probability.
Therefore, the distribution of gtrsubmodel is aproximately uniform (Figure 6).

We have verified that the marginal prior densities of the relevant parameters match the expected densities.
In addition, sampling under the prior provides a straightforward way to assess whether the data are
informative for the numerous parameters and hyperparameters in our model. This is done by comparing
the marginal prior densities to the marginal posterior densities (after running with data).
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Figure 6: The prior distribution over all possible GTR submodels, simulated using MCMC.

Analyze the data

Since you have determined that the model was specified correctly, it’s time to proceed with the full analysis.
Return to MrBayes and run MCMC while accounting for the information in the data. For this analysis,
perform 2 independent runs using Metropolis-coupled MCMC (MC3) by setting nruns=2 and nchains=4;
and set savebrlens=yes.

• MrBayes > mcmcp data=yes nruns=2 nchains=4 savebrlens=yes

Needless to say, performing MCMC while accounting for the data is far more computationally intensive
and takes a great deal longer than running on empty. Therefore, for the purposes of this exercise, specify
fewer steps for the Markov chain. (This is simply for the sake of time, ideally we would run MCMC much
longer.)

• MrBayes > mcmcp ngen=100000 printfreq=100 samplefreq=100

Set the diagnostics to maxstddev every 1,000 iterations.

• MrBayes > mcmcp diagnfreq=1000 diagnstat=maxstddev

Run the analysis with mcmc command and specify the output file name.

• MrBayes > mcmc filename=conifer-rjmcmc

Once the Markov chain is completed, summarize the MCMC samples of the scalar parameters using the
sump command.

• MrBayes > sump filename=conifer-rjmcmc

The sump command will generate tables showing summary statistics of the model parameters.

• First, look at the table of model parameter summaries and find k_revmat. Notice that the mean
is higher (k_revmat ≈ 4.67) than the mean value expected under the prior (k_revmat = 3.32).
Furthermore, the 95% credible interval (also referred to as the 95% HPD interval) of k_revmat is
[4,6] (this is the case for the provided output files). This range does not cover the expected number
of rates under the prior (3.320197), indicating that there is a significant amount of information in
the data for the number of unique values in the rate matrix.
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• The next table generated by the sump command shows the different GTR submodels with posterior
probability over 0.05. This table is reproduced for you (from the provided output files) in Table 5.
For these data, the analysis shows that only 6 of the 203 GTR submodels have posterior probability
over 0.05. Furthermore, no single model stands out as the “best” model with a significantly high
probability. Thus, model averaging for these data provides a way to estimate under multiple GTR-
model configurations.

Table 5: Models in the GTR family with posterior probability over 0.05.

Posterior Standard Min. Max.

Model Probability Deviation Probability Probability

gtrsubmodel[123345] 0.326 0.009 0.320 0.333

gtrsubmodel[123343] 0.208 0.016 0.197 0.220

gtrsubmodel[123341] 0.163 0.005 0.160 0.166

gtrsubmodel[123454] 0.119 0.004 0.116 0.121

gtrsubmodel[123456] 0.067 0.009 0.060 0.073

gtrsubmodel[123453] 0.061 0.006 0.057 0.065

We can get a more detailed view of these features of our data when we evaluate the marginal densities of
the gtrsubmodel and k_revmat in Tracer (open a new terminal window, do not quit MrBayes). Open all
of the *.p files from this exercise in Tracer.

• > tracer conifer-rjmcmc-prior.p conifer-rjmcmc.run1.p conifer-rjmcmc.run2.p

• Select the file for run1 in the Trace Files pane of the Tracer window. Evaluate the Marginal

Density of k_revmat for each of the traces and each of your 3 *.p files. To select multiple files,
hold down the control key while clicking on each file name. (Do not select the Combined file. This
combines the samples for all of the trace files loaded into Tracer, including the samples from the prior.
The combined trace file is intended only when the loaded files are from independent runs on the same
dataset under the same model and prior parameterization. If conifer-rjmcmc-prior.p was not
loaded and if the two independent runs (run1 and run2) sampled the same stationary distribution,
then it is appropriate to evaluate the Combined trace.)

• Color the marginal densities of each run by selecting Colour by: Trace File in the pull-down menu
at the botom of the window. Also, choose Legend: Top-Left to place a key in the graph. Here,
you are comparing the marginal densities of the k_revmat parameter for 2 independent runs and the
prior.

• Take note of the fact that the 2 posterior marginal densities are almost completely overlapping, this
indicates that the two runs have both converged on the same stationary distribution.

• Furthermore, the marginal posterior densities are distinctly different from the marginal prior distri-
bution, which is uniform over all 203 models. The posterior samples show that the data support
very few of the GTR-submodels. This remains the case, even when the Markov chains are run for
5,000,000 generations. This is shown in Figure 7.

Return to MrBayes and summarize the tree topology and branch lengths:

• MrBayes > sumt filename=conifer-rjmcmc

And quit the program:
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Figure 7: The marginal posterior and prior distributions of the GTR submodel. The posterior densities of the
submodel are colored in red and blue. Because the two runs (ngen=5000000) have converged on the same stationary
distribution, they are almost completely overlapping (i.e., the blue line is barely visible).

• MrBayes > quit

Open the summary tree in FigTree and make a figure that shows the bipartition posterior probabilities
(Figure 8).

• figtree conifer-rjmcmc.con.tre

Figure 8: The summary tree from the rjMCMC analysis, with posterior probabilities labeled at nodes.

Exercise 2 – Batch Mode

All of the MrBayes commands are in the batch file: conifer_rjMCMC.nex
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Useful Links

• MrBayes: http://mrbayes.sourceforge.net/

• PhyloBayes: www.phylobayes.org/

• BEAGLE: http://code.google.com/p/beagle-lib/

• Tree Thinkers: http://treethinkers.org/

Questions about this tutorial can be directed to:

• Tracy Heath (email: tracyh@berkeley.edu)
• Brian Moore (email: brianmoore@ucdavis.edu)
• Conor Meehan (email: conor.meehan@dal.ca)
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