# Continuous Trait R Tutorial

# D. Luke Mahler - March 16, 2013; revised September 29, 2013

# Summary

In this tutorial, we will conduct several exercises that employ phylogenetic comparative methods for
continuous trait evolution. We'll start by loading in a phylogenetic tree and data for two traits into R,
and using several tools to visualize our data, measure phylogenetic signal, and estimate ancestral
states, assuming a model of Brownian motion. We’ll be using published data for Anolis lizards, which
are a well-known adaptive radiation.

We'll then conduct a “phylogenetically correct” statistical analysis, in this case a phylogenetic
regression. We'll test whether perch diameter is an important predictor of relative limb length in
anoles, once phylogeny is accounted for.

Third, we'll fit and formally compare several simple models for the evolutionary process that
gave rise to the extant diversity of relative limb lengths in Greater Antillean Anolis.

# Tutorial

# Data Input and Preparation

#To get started, open up R, set your working directory, load the following libraries, and read in the
files I gave you for Anolis ecomorphological and phylogenetic data. It’s worth mentioning that we’ll
rely quite a bit on one of the most widely used phylogenetic comparative methods packages - ape -
but we don’t need to load it independently because it’s loaded automatically with some of the
packages below.

setwd ("PASTE THE PATH OF YOUR FOLDER HERE")
require (geiger)

require (phytools)

require (devtools)

require (nlme)

require (gpcR)

require (reshape)

require (calibrate)

—~ o~ o~~~ —~

#Let's first import the anole phylogeny (GA AnolisMCC.tre)intoR.
GA Anolis<-read.tree("GA AnolisMCC.tre")

#How'’s the tree look? Type the following to plot it (note that I've decreased the font size using the
parameter “cex”):

plot (GA Anolis,cex=0.5)
# Read in the ecology and morphology data set. The morphology data are relative limb length
variables from a phylogenetic PCA conducted in Mahler et al. (2010). This data set also includes
ecological data - the logarithm of the average diameters of perches used by anole species observed in

the field. These data are from Glossip and Losos (1997).

ecomorphol <- read.csv("anole limbs ecol.csv",row.names=1)



# Next, we need to make sure our data sets match (i.e., the tips of our tree need to correspond to the
rows in our data frame). We'll use the base function setdi ff, to figure out which species are in the
tree but not our data set, and which are in the data set, but not the tree. Then we’ll prune these
species out.

# Species names for phylogenetic trees in “ape” are stored in a vector that’s part of the “phyl0”
object. We can see this vector by typing “yourtreenamehereS$tip.label” (for us, this is
“pruned$tip.label”). For our data object, the species names are stored as the row names.

TreeOnly <- setdiff (GA AnolisS$tip.label, rownames (ecomorphol))
TreeOnly # Enter the name of the object we just created to see what'’s in it.

DataOnly <- setdiff (rownames (ecomorphol), GA Anolis$tip.label)
DataOnly # Inour case, this should be empty.

# In our case, everything we measured is also in the tree, but we apparently didn’t measure
everything in the tree. Because we have data for fewer taxa than we have in our phylogeny, we'll
need to prune our tree to match it before proceeding further.

# We'll prune the tree using drop.tip. We need to give it our tree, and a list of species to prune.
We'll use the TreeOn1ly list of species names we just made to prune these species from the tree.

pruned <- drop.tip(GA Anolis,TreeOnly)

# If we had rows in our data set that weren't in the tree (i.e., if DataOnly contained species names),
we could delete them from our data set by uncommenting the following command. What we're doing
is creating a new reduced data object from ecomorphol. This one is made by copying the original
ecomorphol object, minus the rows for which the rowname s match this list of species that are in
the data set, but not the tree.

# Note that you don't want to use this particular command if DataOnly is empty, as it will delete
your data. I've illustrated this command though, as this type of operation is useful for dropping rows
from dataframes or matrices by row name.

# ecomorph2 <- ecomorphol[-match (DataOnly, rownames (ecomorphol)), ]

# Before we begin, there are a couple more things to do. First, let’s sort our trait data to match the
order of the tips in the tree. Many phylogenetic comparative method functions in R assume that data
are arranged in an order that matches the storage of the tips of the phylogenetic tree at hand. We'll
sort our morphology and ecology data this way. When running analyses in R, you should always be
aware of the order of the elements in your data objects. Here’s how to sort our data to match the
species order from our tree:

ecomorphol<-ecomorphol [pruned$tip.label, ]

# Then let's make new objects with the variables of interest. The main reason we’re doing this is so
our script looks less cluttered when we move to fitting models and plotting. Here we'll make vectors
corresponding to our limb length and perch diameter variables. Once we make each of these, we'll
also name the vector elements using the species names contained in the row names in our dataframe.

limbs <- ecomorphol[,1] # Make a vector of limb lengths.

names (limbs) <- row.names (ecomorphol) # Name the vector elements.
perch diameter <- ecomorpholl, 2]

names (perch diameter) <- row.names (ecomorphol)

# Data Exploration




# As with any analysis, the first thing we want to do is to is explore our data. This is important for a
lot of reasons - it helps us catch inputting errors, visually identify interesting relationships, and
interpret the results of subsequent statistical analyses.

# We'll begin by plotting our variables at the tips of our tree. This way we can get a sense for the
phylogenetic distribution of the trait - is a particular trait phylogenetically conserved, or labile? Does
a particularly extreme trait value appear to have evolved once, or many times? It’s not too difficult to
plot continuous traits at the tips of your phylogeny in R. We’ll use a simple script to do it. (Note that
there are lots of ways to explore continuous data in R that are worth trying out. For example, the
package picante has a function, color.plot.phylo, that serves much the same purpose as what
we'll try below.

# The first thing we’ll do is rescale our variables for plotting. The following command rescales our
limb measurements from 0 to 1, with the shortest-limbed species having a value of 0, and the longest
having a value of 1. Ditto for perch diameter. We're not going to analyze these variables - we just
want something we can plot on the tree to illustrate the variation in each trait.

limbs.lines <- (limbs-min(limbs)) / (max(limbs)-min (limbs))
perch diameter.lines <- (perch diameter-min (perch diameter)) /
(max (perch diameter)-min(perch diameter))

# Now let’s plot the tree. Note that we're telling it to plot within a subsection of the plotting window.
By setting the “x.1im” parameter to 3, we're telling it to plot with an upper x-axis limit of 3.

plot (pruned,x.1lim=3,cex=.5, font=4, label.offset=.025,edge.width=3)

# Then we’ll plot line segments corresponding to each trait. The plotting parameters in here are very
specific to this data set, and should be viewed as a template. The great thing is that you can change
any of them yourself - you’ll need to play around with them (e.g., changing the starting positions of
the segments, or their scaling) to get your own data plotted.

nspecies <- length (prunedS$tip.label)

segments (rep(l.5,nspecies), l:nspecies,rep(l.5,nspecies)+(0.3*perc
h diameter.lines),l:nspecies, lwd=3)

mtext ("relative perch diameter", at = 1.6, side = 1, line = 0,
cex=.5, font=2)

segments (rep (2, nspecies),l:nspecies, rep(2,nspecies)+(0.3*1limbs.11i
nes),l:nspecies, lwd=3)

mtext ("relative limb length", at = 2.2, side = 1, line = 0,
cex=.5, font=2)

# What can you tell about our two traits from looking at this plot? Do the traits appear to show
phylogenetic signal?

# There are other steps we can take to answer this question.
# Let’s actually calculate phylogenetic signal for these traits. Using the phytools function
phylosig, we'll calculate signal using two measures: Pagel’s lambda and Blomberg's K statistic.

limbs.lambda <- phylosig(pruned, limbs, method="lambda")
limbs.K <- phylosig(pruned, limbs, method="K", nsim=1000)



perch diameter.lambda <- phylosig(pruned, perch diameter,
method="1lambda")

perch diameter.K <- phylosig(pruned, perch diameter, method="K",
nsim=1000)

limbs.lambda

limbs.K

perch diameter.lambda
perch diameter.K

# Do these variables show phylogenetic signal? How would we interpret these measures,
biologically? What do these values mean?

# Ancestral State Estimation for Continuous Traits (plus Phylomorphospace plotting)

# Commonly, researchers may be interested not just in what the present species values are for a trait,
but what trait values the ancestral taxa within a clade had. There are many conditions under which
it’s very difficult to estimate ancestral states with any degree of certainty, and techniques for
estimating ancestral states rely on assumptions that are commonly violated for empirical data sets.
Thus, anyone interested in ancestor reconstruction should become familiar with the literature on this
topic. Nonetheless, there are many situations under which such reconstructions may be useful
(especially for data exploration). With the phytools function “fastAnc”, we'll use maximum
likelihood to estimate ancestral states for our two traits, and calculate confidence intervals for these
estimates.

limbs.anc <- fastAnc (pruned, limbs, CI=TRUE)
perch diameter.anc <- fastAnc (pruned,perch diameter,CI=TRUE)

# Confidence intervals for ancestral state reconstruction can be quite large, which is often the case
for deep nodes.

# Another way to visualize a continuous trait ancestral reconstruction is to use the phytools
function “contMap”.

parsettings <- par(no.readonly=TRUE) # Record plotting parameters
par (mfrow=c(1,2)) # Set plotting parameters to make 2 panel plot
contMap (pruned, limbs, res=30, fsize=c(1,0.6))

contMap (pruned, perch diameter, res=30, fsize=c(1,0.6))

par (parsettings) # Reset to original plotting settings

# One way of visualizing the trajectory of trait evolution during diversification, assuming Brownian
motion, is to plot a phylomorphospace. A phylomorphospace is a (usually) 2D plot of species values
for two traits, where the species are linked by the phylogeny. The coordinates of the nodes of the
phylogeny correspond to their ancestral state reconstruction values for each trait.

# Before we plot a phylomorphospace, let’s just plot a “morphospace.” That term is a stretch here,
because we’re plotting limb length and perch diameter variables, only one of which is a

morphological trait.

plot (perch diameter,limbs,xlim=c(-3,5),ylim=c(-10,5),xlab="1og
Perch Diameter",ylab="Relative Limb Length",pch=19,col="red")

# Now let’s plot the phylomorphospace:



phylomorphospace (tree=pruned, X=cbind(perch diameter, limbs),
label="horizontal", xlim=c(-3,5),ylim=c(-8.5,4.5), xlab="Perch
Diameter", ylab="Relative Limb Length")

# In this phylomorphospace, the ancestral state estimates are small dots, and extant species values
are larger dots.

# For fun (and clarity), let's make the tip colors red, but keep the ancestor (internal node) colors
black. Phylomorphospaces can be very messy, but are occasionally useful, as they illustrate ancestor-
descendant trajectories of trait evolution - or at least our estimates of these trajectories assuming a
Brownian motion model of evolution.

tip.cols <- rep("red", length (pruned$tip.label))

node.cols <- rep("black",pruned$Nnode)

cols <- c(tip.cols,node.cols)

names (cols) <- l:length(cols)

phylomorphospace (pruned, cbind(perch diameter, limbs),
label="horizontal", xlim=c(-3,5),ylim=c(-8.5,4.5), xlab="Perch
Diameter",ylab="Relative Limb Length",control=list (col.node=cols))

# Testing for an ecomorphological relationship in anoles using phylogenetic regression

# Greater Antillean anoles have been the subject of many ecomorphological studies. Studies of
organismal performance, behavior, and natural selection in the wild all suggest that there is an
adaptive relationship between relative limb length and mean perch diameter in anole species. We'll
test this adaptive hypothesis using the comparative method. We'll first test whether perch diameter
is a significant predictor of anole limb length when phylogeny is accounted for using a regression of
phylogenetically independent contrasts. We’'ll then compare this approach to the phylogenetic
generalized least squares approach.

# First, let’s replot our variables:

plot (perch diameter,limbs,xlim=c(-3,5),ylim=c(-10,5),xlab="1og
Perch Diameter",ylab="Relative Limb Length",pch=19,col="red")

# Now that we have a sense for the relationship between limb length and perch diameter, let's test
the hypothesis that limb length is a function of perch diameter using a standard non-phylogenetic
regression. We'll use the basic stats function "1m" to fit a linear model.

# The notation here is pretty simple - since we've already named our independent and dependent
variables, we simply put a formula into the "1m" function. We want it to look like:
"dependent_variable ~ independent_variable". We're interested in how perch diameter has shaped
limb evolution in Anolis, so we’ll fit the following model:

ecomorph.reg <- Im(limbs~perch diameter)

# For linear models in R, the command "summary" will return a table of standard statistical output.
summary (ecomorph.reqg)

# We can add the regression line to the plot we made earlier with the following command.
abline (ecomorph.reqg)

# Note that we can always plot a line using abline () by entering the intercept and slope, separated
by a comma. The function will find these automatically if we give it regression output (i.e.,



ecomorph. reg), but we could plot it manually if we wanted. For example, to plot a dotted line
indicating unity, type abline (0,1, 1ty="dotted").

# So it looks like there's a highly significant relationship whereby perch height explains about a third
of the variance observed.

# But this could simply a phylogenetic artifact if, say, all the high-perching short-limbed species were
close relatives.

# Let's check this using phylogenetic comparative methods!

# First, we'll calculate the phylogenetically independent contrasts for each variable, and perform a
regression on these.

# We'll use the ape function "pic", which takes a variable and a phylogenetic tree as input. As usual,
both must either be labeled, or the variables must be ordered in the same order as the tip labels of
our phylogenetic tree. We were careful to label and sort our variables earlier, so we should be OK.

pic.perch diameter<-pic(perch diameter, pruned)
pic.limbs<-pic (limbs, pruned)

# Now that we have our contrast values, let's take a look at them. Is there an obvious relationship?
Keep in mind that these points no longer correspond to species values for the two trait axes. They
reflect the evolutionary differences between the immediate descendants of each node in the

phylogeny.
plot (pic.perch diameter,pic.limbs,xlab="1log Perch Diameter

Contrast", ylab="Relative Limb Length Contrast", pch=19,
col="blue")

# One tricky thing about independent contrasts is that any correlation between two sets of contrasts
must be assessed using a regression that is "forced through the origin.” That is to say, the regression

line must pass through the point (0,0).

# Regressing through the origin is easy in R. All we have to do is fit a linear model without an
intercept term using the function "1m." We tell it not to fit an intercept by including the term "-1".

pic.fit <- Im(pic.limbs ~ pic.perch diameter -1)
summary (pic.fit)

# What's the relationship between limb length and perch diameter contrasts? Is perch height a
significant predictor of limb length? Is the relationship positive or negative? Does the slope differ

fundamentally from our non-phylogenetic analysis, or not really?

# Now look at the multiple R-squared value to assess how much variation is explained by this
predictive relationship. How does this compare to our non-phylogenetic R-squared value?

# Finally, let’s plot the regression line on our existing plot of contrasts:

abline (pic.fit)

HHEHHH AR HHHHHH AR HHHH A AR HHHH SR HHHHHHH

# This is great, but you'll remember from lecture that PIC is a special case of the phylogenetic
generalized least squares (PGLS) model class.



# Let's demonstrate this ourselves. We'll next perform a PGLS phylogenetic regression using the
generalized least squares package nlme.

# Generalized least squares is a method for estimating the fit of a linear model when the errors
exhibit uneven variance (heteroscedasticity), or when the errors are correlated.

# The latter is our concern - if we're looking at species, it's pretty likely we have phylogenetically
correlated errors.

# Functions in the package "n1me " allow us to specify the error structure in our model (the
"correlation” term). Naturally, we'll give it a phylogenetic correlation structure, using a phylogenetic
variance-covariance matrix estimated in the phylogenetics package "ape."

# We'll start by assuming that the errors are perfectly phylogenetically correlated, which is the
assumption if trait evolution occurs under pure Brownian motion. This is the same assumption made
by the PIC algorithm.

# We're going to use the package n1me, which we loaded at the start of the tutorial.

## Let's fit our relationship, specifying that the correlation structure is pure Brownian motion. We’ll
use slightly different-looking notation for the formula here - this time the variable names are the
column names from the dataframe, and we’ll tell the function to use that dataframe (ecomorphol)
to find the data:

result.pureBM<-gls (PCI limbs~logPD, data=ecomorphol,
correlation=corBrownian (phy=pruned) ,method="ML")
summary (result.pureBM)

## Take a look at the slope and its standard error. How do these compare to the estimates from our
regression of limb PICs on perch diameter PICs?

# We can plot this as well. This plot will have the same dimensions as our first (nonphylogenetic)

regression plot because we're fitting a model to species values for two traits. This is an important

distinction from our PIC regression. We're working in the "original species space" as opposed to a
space defined by phylogenetically independent changes. This is one of the advantages of the PGLS

approach - the plots are fairly intuitive.

plot (perch diameter,limbs,xlim=c(-3,5),ylim=c(-10,5),xlab="1og
Perch Diameter",ylab="Relative Limb Length",pch=19,col="green")
abline (result.pureBM, col="green")

# How does the fit of our phylogenetic model compare to the non-phylogenetic one? We can see by
plotting the non-phylogenetic regression line in a different color on the same plot.

abline (ecomorph.reg,col="black") # Fit from non-phylo regression

# How does this fit of this regression look? Any thoughts on why it looks the way it does?

# Of course the key feature of PGLS is flexibility in the assumptions of the model. For example, PIC
assumes perfect phylogenetic signal (at least unless you first transform your tree).

# PGLS, on the other hand, can estimate the phylogenetic signal present in the error variance of the
model while it's actually fitting the model. This is more appropriate, especially if you're uncertain
how much phylogenetic dependence is in your data.

# Let's try this below. The PGLS model above assumed phylogenetic signal of lambda = 1, which is
why we got the same answer as with PIC. Let's allow n1me to estimate phylogenetic signal (lambda)
while fitting the model. You'll notice that the only difference is that we feed the function a different
correlation structure for the errors, and tell it to estimate the phylogenetic signal while fitting the
model. The correlation structure is called "corPagel" because we're fitting Pagel's "lambda"
parameter, a common tree-scaling parameter that is used to estimate phylogenetic signal.



result.lambda<-gls (PCI_ limbs~logPD, data=ecomorphol,
correlation=corPagel (value=1, phy=pruned,
fixed=FALSE) ,method="ML")

summary (result.lambda)

# Here we'll want to look at the slope of our relationship, as before, but we'll also be interested in
looking at the estimate of lambda. Lambda normally ranges from 0 - 1, with values near zero
reflecting phylogenetic independence and values near 1 reflecting phylogenetic dependence. What is
our estimate of lambda?

HHEHHH AR HHHHAH AR HHHH A AR HHHHSHAAHHHHHHH
HHEHFH AR HHHHHH AR HHHH A AR HHHH S AR HHHBHAH

# Exercise 2: Anolis Limb Length and Evolutionary Process

# Greater Antillean anoles are widely regarded as an adaptive radiation, with anole species rapidly
radiating across the Caribbean to utilize a diversity of microhabitat niches (e.g., tree trunks, rocks,
twigs, grassy habitats). We might therefore predict that anole trait evolution is best modeled using an
“early burst” evolutionary process in which evolution is rapid early in the radiation but slows down
as niches are filled. However, this pattern is rarely observed in comparative data, so we’ll want to
consider other alternatives. In this exercise we’ll investigate the evolutionary process responsible for
generating relative limb length diversity in anoles. We’ll use the R package geiger to compare the
fit of three alternative macroevolutionary models: Morphological Drift (Brownian Motion), Adaptive
Radiation (Early Burst), and Evolutionary Constraint (Ornstein Uhlenbeck).

# First, let’s read in the data. We'll be using a similar relative limb length data set, but this one has
much better sampling: 100 out of the ~120 species from the Greater Antilles.

Limbs<-read.csv("Limbs.csv", row.names=1)

# This “data frame” should have 100 rows, each corresponding to a Greater Antillean anole species. It
should have a single column of limb length data - these values are the scores from the first axis of a
principal component analysis of Anolis shape traits from Mahler et al. (2010).

# Before we go further, let’s sort our data frame so that the rows match the order of the taxa in the
phylogenetic tree. This is important for many comparative analyses in R. Some functions will match
your data to your tree using row labels and tip labels respectively, but not all will, so sorting is a good
habit. *Technical Note: when you create a new object in R that has only a single row or column, R will
automatically store it as a vector class object, even if you created it from a matrix or a dataframe. This
stinks because you will lose all of your valuable row and column names! The handy command
“drop=FALSE” will prevent this automatic class conversion.

Limbs<-Limbs[GA Anolis$tip.label,,drop=FALSE]

# Now that we have our data and our tree in order, we'll fit the three alternative models described
above, saving the model parameters as data frames:

brown limbs<-fitContinuous (GA Anolis,Limbs)



eb limbs<-fitContinuous (GA Anolis,Limbs,model="EB",
bounds=1list (a=c(-3,1)))
ou limbs<-fitContinuous (GA Anolis, Limbs,model="0U")

# Type the names of any of these objects (e.g,, eb_1imbs) to look at the model parameters.
# To compare these models easily, it helps to have a table. We'll make a table with the likelihood
scores, AIC scores, delta AICs, and AIC weights so that all three models may be easily compared.

# Let’s do this by constructing an empty table (labeling rows and columns), which we’ll then fill:
model<-matrix(,3,4,dimnames = list(c("Brownian Motion", "Early

Burst", "Ornstein-Uhlenbeck"),c("log likelihood", "AICc", "Delta AICc",
"AICc Weights")))

# Before we fill it, take a look to make sure it looks right:

model

# Now, let’s put the likelihood scores and AICc values into the first two columns, calling them from
the dataframes we made earlier:

model[,1]<-c(brown limbsSopt$lnL, eb limbsS$Sopt$lnL,
ou limbsSopt$lnk)

model[,2]<-c(brown limbsSopt$aicc, eb limbs$optSaicc,
ou limbsSopt$aicc)

# In likelihood scores can rarely be directly compared. This is why we use AICc scores for model
comparison. Butlook at the likelihood and AICc scores for these models? What do you notice?

# While AICc scores are useful, delta AICc scores and AICc weights can often be more intuitive ways
of expressing model support. We'll calculate these using the gpcR function akaike.weights:

# First, make a vector of AICc scores:
aic.all<-as.matrix (model[,2])

# Then, calculate delta AICc scores and AICc weights.
scor.wts<-akaike.weights(aic.all)

# Finally, add these to our table:

model [, 3]<-scor.wts$deltaAIC
model[,4]<-scor.wtsS$Sweights

# How does it look? Which, if any, model is best supported?

model

# This is great, but we're not done yet! Naturally, we want to dig deeper and explore the parameters
of our favored model. In particular, we’ll want to assess the level of certainty we have in both our
model selection and our parameter estimates.

# While AIC scores are a very straightforward way to compare models, a recent study (Boettiger et al.
2012, Evolution 67:2240-2251) has shown that this model selection approach may erroneously favor
overly complex models for comparative data (i.e., high Type I error).



# Thus, we'll next show how to more rigorously compare models using parametric bootstrap
simulations. We'll also show how to quantify phylogenetic uncertainty in model parameter estimates
by repeating an analysis across a distribution of trees.

HAHSHUHHSHEHEHSEHHHHSHEHEH S HH
# (A) Repeating Analyses Across a Tree Distribution to Account for Phylogenetic Uncertainty
HAHSHUHHAHEHEHSEHHHHSHEHEH S HH

# Methods that use maximum likelihood to select models of trait evolution typically assume that the
phylogenetic history of the focal organisms is known without error. This is unlikely to be the case, of
course. Usually we use a particular phylogeny that we like for some reason - perhaps it’s the “most
credible” phylogeny from a Bayesian posterior distribution according to some criterion, for example.
Although many Bayesian methods account for phylogenetic uncertainty natively when estimating
parameters, we’ll have to do this ourselves when using the ML methods introduced above.

# Perhaps the first thing we’ll want to know is whether our model selection is robust to phylogenetic
uncertainty. Let’s read in a series of trees from a Bayesian posterior distribution (to save time, we’ll
only consider a 50 tree sample here).

trees50 <- read.tree("trees.mid.pruned.tre")

# Next, the following script shows how to fit our four models using all 50 trees in this Bayesian
distribution. Note: ['ve commented these commands out because they take several minutes to run
(more time than we have now). What we'll do instead is read in the results of these analyses (I ran
them earlier, and saved a file for each result object).

treesconsidered <- 50

# brown trees <- list (length=treesconsidered)
# eb trees <- list(length=treesconsidered)
# ou trees <- list(length=treesconsidered)

# for (i in l:treesconsidered) {
# brown trees[[i]] <- fitContinuous (trees50[[1]],Limbs)
# eb trees[[i]] <- fitContinuous (trees50[[i]],Limbs,
model="EB",bounds=list (a=c(-5,1)))
# ou trees[[i]] <- fitContinuous (trees50[[i]],Limbs,
model="0U")
# )

load ("brown_ trees.R")
load ("eb trees.R")
load ("ou trees.R")

# Now that we’ve fitted the models, let’s organize the information we need to compare them. The
question we want to answer is:

# “Is model support consistent across all of the phylogenies in our sample?”
# You'll recall we used AICc scores to compare models earlier. We'll do this again here, as our current

objective is to look at phylogenetic variation in relative model support. Let’s pull AICc information
out for our sample of trees. First we’ll make a table:



aic.table <- matrix(,treesconsidered, 3,dimnames=1ist (c(1l:
treesconsidered),c("Brownian Motion", "Early Burst", "Ornstein-
Uhlenbeck")))

# Now let’s fill it with the AICc scores from our model fitting results above.

for(i in l:treesconsidered) {

aic.table[i,1] <- brown trees[[i]]$opt$aicc
aic.table[i,2] <- eb trees[[i]]SoptSaicc
aic.table[i,3] <- ou _trees[[i]]SoptSaicc

}

# AIC weights are a little more intuitive, so let’s go a step further and make a table that displays these
for the alternative models for all of our trees. This is pretty similar to what we just did. First we’ll
make an empty table, and then we’ll fill it with AICc weights.

aic.weights.table <- matrix(,treesconsidered, 3,dimnames=1ist (c(1:
treesconsidered),c("Brownian Motion", "Early Burst", "Ornstein-
Uhlenbeck")))

for(i in 1: treesconsidered) {
aic.weights.table[i,] <- akaike.weights(aic.table[i,]) Sweights
}

# It will be easier to compare our models if we plot the distributions of weights graphically.

# Density plots can be useful for comparing distributions. We'll first generate and store kernel
density estimates for our distributions. We'll then plot them all on the same plot (I'm "filling" these
plots with the "polygon" function, and making them semi-transparent by calling "rgb" to color
them in. The last value in an "rgb" command determines the degree of transparency of the plotted
color.).

bm.aic.weights <- density(aic.weights.tablel[,1])
eb.aic.weights <- density(aic.weights.tablel[,2])
ou.aic.weights <- density(aic.weights.tablel[,3])

plot (bm.aic.weights,xlim=c(0,1),ylim=c(0,25),main="Model support
over distribution of phylogenies",xlab="AICc
weight",col=rgb(0,0,0,0.5))

polygon (bm.aic.weights, col=rgb(0,0,0,0.5))

polygon (eb.aic.weights, col=rgb(1,0,0,0.5))

polygon (ou.aic.weights, col=rgb(0,0,1,0.5))

legend ("topright", c("BM", "EB", "OU"), lty=1l, lwd=4,
col=c(rgb(0,0,0,0.5), rgb(1,0,0,0.5), rgb(0,0,1,0.5)))

# So this tells us how phylogenetic uncertainty affects model selection, but how does it affect
parameter estimation? We can quantify this uncertainty as well using the same methods. Let’s focus
on the Early Burst model and take a look at how phylogenetic uncertainty affects our estimate of the
“slowdown” parameter.

eb.alpha.table <- matrix(,treesconsidered,1,dimnames=1list (c(1l:
treesconsidered),c("alpha")))

for(i in l:treesconsidered) {
eb.alpha.table[i,1] <- eb trees[[i]]SoptSa
}



phylo.density <- density(eb.alpha.table[,1])

plot (phylo.density,main="Phylogenetic uncertainty for the
slowdown parameter", xlab="alpha",col="darkgray", xlim=c(-3,0),
ylim=c (0,2.5))

polygon (phylo.density, col="darkgray")

# For the early burst model, does there seem to be much variation in our estimate of alpha?
HHAHHH G HH S G HH SRS RS SRS HHH

# (B) Using Parametric Bootstrapping to Quantify Parameter Estimation Uncertainty
HHAHHHEHH S G HH S HH R HHS RS HHH

# Phylogenetic uncertainty is only one source of uncertainty though. There’s also uncertainty
associated with our estimation of model parameters. Here we’ll employ a “bootstrapping” simulation
technique (simulation is used to numerically assess the sampling properties of our method of
estimating parameters). Fortunately for us, Carl Boettiger wrote an R package (pmc) that can be
used to obtain bootstrapped estimates of parameter estimates for models of continuous trait
evolution.

# Before we get started, we need to do a little hack to make sure pmc works. The pmc package
depends on an old version of geiger, and many of the functions in that package changed with a
recent update. pmc hasn’t been updated to use the current version of geiger yet. So.... we're going
to enter developer mode (using devtools) to temporarily install the old version of geiger from
GitHub just for this session, and then install pmc, so that pmc will work.

dev_mode (on=TRUE)

install github("geiger", "cboettig")
install.packages ("pmc")
require (pmc)

# We'll use it to simulate expected distributions for the parameters of the model that provided the
best fit to our limb length data: the Early Burst model (pmc simulates for pairs for model
comparison purposes, so well also simulate under Brownian Motion). Note that we're using a
relatively small number of bootstraps. This is simply to save time, and a real study should use an
order of magnitude more.

# First, we simulate. When we run "pmc", we simulate under two models (here, we're simulating 100
data sets using the empirical parameters for the Early Burst model, and then 100 data sets using the
empirical Brownian Motion parameters).

# What we're interested in looking at is the distribution of "slowdown parameter"” values we obtain
by simulating under the Early Burst model. This provides a robust way to obtain confidence intervals
for this parameter.

# What we'll do is simulate with 10 bootstraps, but since bootstrapping takes awhile, we'll then load
in a pre-simulated data set with 100 simulations.

pmc_eb limbs <-
pmc (GA_Anolis,Limbs,modelA="EB",modelB="BM", nboot=10)

# Here's the data set with 100 sims. By loading this, we're writing over our old "pmc_eb limbs"
object with a bigger one.

load ("alpha parameter bootstrap.R")



“«_n

# Now pull out the subset of pmc results corresponding to the “a” parameter.

aparameter <- subset(pmc _eb limbs[["par dists"]],comparison ==
"AA" & parameter == "a")

# Look at the bootstrapped distribution of the "slowdown" parameter.

bootstrap.density <- density(aparameter[,1])

plot (bootstrap.density,main="Estimation uncertainty for the
slowdown parameter", xlab="alpha",col="darkgray",xlim=c(-3,2),
ylim=c(0,1.5))

polygon (bootstrap.density,col="darkgray")

# We can calculate confidence intervals using this bootstrap distribution using the cast command
from the package reshape.
# Here’s the command to return the 1-tailed 95% confidence interval.

cast (aparameter, comparison ~ parameter, function(x) quantile (x,
c(0.0, 0.95)), value = c("lower", "upper"))

HHEHHHHHHHHBH A AR HHHHAH AR HHHS

# (C) Using Parametric Bootstrapping to Quantify Phylogenetic and Parameter Estimation
Uncertainty Simultaneously

HHEHHHHHHHHBH A AR HHHHAH AR HHHS

# Of course what we'd like to do is quantify both phylogenetic and model uncertainty. Let's do this
by creating a loop that performs our bootstrapping operation over the distribution of trees we
specified earlier.

# Because bootstrapping is very time intensive, I've commented out this code, and have provided
results from simulations I ran overnight instead. Nonetheless, it's worth going over this part of the
script.

# First we'll create a matrix with no rows.

# We'll then add rows to this matrix with our loop. Each time we do bootstrapping, we add a single
row to our matrix for each simulation (so since we set nboot = 100, that's 100 rows). We simply
repeat this for each phylogeny from our distribution of phylogenies - we therefore add 100 rows per
phylogeny for a total of 5000 rows in this exercise. Each column in the matrix should have some
parameter, and the distribution of this parameter across all of our rows should reflect the
distribution of our model parameter given uncertainty in both model estimation and phylogeny. We
can visualize this by plotting a frequency distribution of values in a column (i.e., parameter) of
interest.

# a bootstrap phylo <- matrix(NA,O0,4)
# for(i in 1:50){

# Limbs<-Limbs[trees50[[1i]]$tip.label,,drop=FALSE] # Don't
forget to sort your trait data for each loop so that it matches the
order in your tree. This is CRITICAL here.

# bootstrap <-
pmc (trees50[[1]], Limbs, modelA="EB", modelB="BM", nboot=100)

# a bootstrap phylo <-
rbind(a_bootstrap phylo, subset (bootstrap[["par dists"]],comparison ==
"AA" & parameter == "a"))



# )
# Let's load up the pre-simulated results.

load ("alpha phylo bootstrap.R")

# Now let's plot the distribution of alpha, accounting for uncertainty in parameter estimation, as well
as phylogenetic uncertainty. This is a parametric bootstrap approach to obtaining a confidence
distribution for a parameter of interest.

bootstrap.phylo.density <- density(a bootstrap phylo[,1])

plot (bootstrap.phylo.density,main="Phylogenetic and estimation
uncertainty for the slowdown parameter",
xlab="alpha",col="darkgray",xlim=c(-3,2), ylim=c(0,1.5))

polygon (bootstrap.phylo.density,col="darkgray")

# Let's again return the 1-tailed 95% confidence interval.

cast (a_bootstrap phylo, comparison ~ parameter, function (x)
quantile(x, c¢(0.0, 0.95)), value = c("lower", "upper"))

# Let's make a plot that compares the sources of uncertainty in our slowdown estimate.

par (mfrow=c(3,1))

plot (phylo.density,main="Phylogenetic Uncertainty",
xlab="alpha",col="red",xlim=c(-3,1))

polygon (phylo.density, col="red")

plot (bootstrap.density,main="Estimation Uncertainty",
xlab="alpha",col="blue",xlim=c(-3,1))

polygon (bootstrap.density,col="blue")

plot (bootstrap.phylo.density,main="Phylogenetic and Estimation
Uncertainty", xlab="alpha",col="black",xlim=c(-3,1))

polygon (bootstrap.phylo.density,col="black")

par (parsettings)

# That's it! Let’s turn developer mode back off before moving on to anything else. Note that when you
restart R, you’ll be back to the current version of geiger.

dev_mode (on=FALSE)



