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Model-Based Phylogenetic Inference

Model-based inference is based on the model

1. Model specification
model selection
model adequacy

model uncertainty/averaging

2. Estimating under the model

likelihood optimization
MCMC simulation



MCMC Approximation of the Joint Posterior
Probability Density

MCMC in theory and practice

MCMC in theory...

an appropriately constructed and adequately run chain is guaranteed to
provide an arbitrarily precise description of the joint stationary density

MCMC in practice...

although a given sampler may work well in most cases, all samplers will
fail in some cases, and is not guaranteed to work for any given case

Q. When do we know that the MCMC provides an accurate approximation
for a given empirical analysis?

'NEVER!



MCMC Approximation of the Joint Posterior
Probability Density
MCMC performance and OCD

It is not sufficient to merely be deeply concerned about MCMC
performance...you need to be about it!

for Bayesian inference based on MCMC

particularly for complex models/inference problems



Outline

l. A review of where we’ve been and why
ll. Diagnosing MCMC performance

lll. Diagnostics based on single chains

IV. Diagnostics based on the prior

V. Diagnostics based on multiple chains
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Bayesu:m Inference of Phylogeny in One Slide

- likelihood function prior probability
Pr(Parameter | Data) =|Pr(Data | Parameter)| x|Pr(Parameter)
Pr(Data)
l. Data marginal likelihood
Assume an alignment, X, of N sites for S species: X = (xl,xz,_,,,xN)
ll. Phylogenetic model parameters IV. Priors on parameters
1. Tree topology T = (171 ,rz,...,r(ZS_s)u) ~Uniform
branch lengths v = (vl ,vz,...,v(25_3)) ~Dirichlet (1,...,1)
2. Model of character change D = (H,Jt,a,T)
substitution rates 0 = (0,046 047-0c6-0cr Or )-Dirichlet (1,1,1,1,1,1)
stationary frequencies T = (J'L’ 47T ,J‘L’G,J'L'T) ~Dirichlet (1,1,1,1)
among-site rate variation ¢ ~Uniform (0.1,100)

lll. Phylogenetic likelihood function
(28-5)!"'28-3 N

Layv.®) =fXltv.® = > []]lfeir,v.0 0, ®dv,de

j=l v, @ i=I

V. Posterior Probability

fEv,®1X)= JX 17y, @) f(T,v,P)

J(X)




Approximating the Joint Posterior Probability
Density with MCMC

Samples from the chain approximate the joint posterior
The frequency of sampled parameter values provides a valid estimate of
the posterior probability of that parameter

We can query the joint posterior with respect to any individual parameter
of interest: the marginal posterior probability
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Approximating the Join
Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules

1. If the proposed step will take the robot uphill, it automatically takes the step

2. If the proposed step will take the robot downhill, it divides the elevation of

the proposed location by the current location, and it only takes the step if

the quotient is less than a uniform random variable, U[0,1]
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Approximating the Joint Posterior Probability
Density with MCMC

Programming our MCMC robot...

Our robot parachutes into a random location in the joint posterior density

and will explore parameter space by following these simple rules

1. If the proposed step will take the robot uphill, it automatically takes the step

2. If the proposed step will take the robot downhill, it divides the elevation of

the proposed location by the current location, and it only takes the step if

the quotient is less than a uniform random variable, U[0,1]

Pr{B >A]

3. The proposal distribution is symmetrical, so Pr[A > B]
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Approximating the Joint Posterior Probability
Density with MCMC

A slightly more formal description of the Metropolis-Hastings algorithm...

1. Initialize the chain with some random values for all parameters, including
the tree with branch lengths, ©® = (,v)

2. Select a parameter to change according to it’s

The MCMC sampler will use the following moves:
Chain will change
(tratio) with Dirichlet proposal
(revmat) with Dirichlet proposal
(revmat) with Dirichlet proposal
(state frequencies) with Dirichlet
(state frequencies) with Dirichlet
(state frequencies) with Dirichlet
(state frequencies) with Dirichlet
(state frequencies) with Dirichlet
(gamma shape) with multiplier

With
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proposal probability, e.g.:

proposal
proposal
proposal
proposal
proposal

sites) with beta proposal

(rate multiplier) with Dirichlet proposal
(topology and branch lengths) with LOCAL
(topology and branch lengths) with extending TBR

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

A slightly more formal description of the Metropolis-Hastings algorithm...

1. Initialize the chain with some random values for all parameters, including
the tree with branch lengths, ©® = (,v)

2. Select a parameter to change according to it’s proposal probability

3. Propose a change to the selected parameter using the parameter-specific
proposal mechanism that is:

(i) stochastic
(ii) irreducible
(iii) aperiodic

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

A slightly more formal description of the Metropolis-Hastings algorithm...

1. Initialize the chain with some random values for all parameters, including
the tree with branch lengths, ©® = (,v)

2. Select a parameter to change according to it’s proposal probability

3. Propose a change to the selected parameter using the parameter-specific
proposal mechanism

4. Calculate the probability of accepting the proposed change:

f(x10) f(@) flele)

R = min|1 . °

f(x1e) f(e) flele)

likelihood ratio prior ratio  proposal ratio

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

A slightly more formal description of the Metropolis-Hastings algorithm...

1. Initialize the chain with some random values for all parameters, including
the tree with branch lengths, ©® = (,v)

2. Select a parameter to change according to it’s proposal probability

3. Propose a change to the selected parameter using the parameter-specific
proposal mechanism

4. Calculate the probability of accepting the proposed change

5. Generate a uniform random variable, U[0,1], accept if R > U

Metropolis et al. (1953); Hastings (1970)



Approximating the Joint Posterior Probability
Density with MCMC

A slightly more formal description of the Metropolis-Hastings algorithm...

1. Initialize the chain with some random values for all parameters, including
the tree with branch lengths, ©® = (,v)

2. Select a parameter to change according to it’s proposal probability

3. Propose a change to the selected parameter using the parameter-specific
proposal mechanism

4. Calculate the probability of accepting the proposed change
5. Generate a uniform random variable, U[0,1], accept if R > U

6. Repeat steps 2 - 5 an ‘adequate’ number of times

Metropolis et al. (1953); Hastings (1970)
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Assessing MCMC Performance:
Three Main Issues

1. Convergence

Has the chain (robot) successfully targeted the stationary distribution?

2. Mixing

Is the chain (robot) successfully integrating over the joint posterior probability?

3. Sampling intensity

Has the robot collected enough samples to adequately describe the posterior
probability distribution?



Outline

l. A review of where we’ve been and why
ll. Diagnosing MCMC performance

lll. Diagnostics based on single chains

IV. Diagnostics based on the prior

V. Diagnostics based on multiple chains



Assessing MCMC Performance:
Diagnostics Based on Single Runs

1. Convergence diagnostics
(i) Time-series plots of parameter estimates
* continuous parameters (e.g., substitution rates)--Tracer
e some parameters are more reliable than others

e steps may occur!



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of tree-length at two stages of a single MrBayes run

bad convergence better convergence
| M
% % , WM\IIM\ V r..i]lu“-
MIND THE GAP
§ 0.81 : | l- Il‘dl’
0.71 ] “' : —
fast* slow*
L ]
1 1
InL  base freq. sub. rates ASRV TL topolo
q pology

*somewhat data-set dependent



Assessing MCMC Performance:

Diagnostics Based on Single Runs
MCMC pathologies

Slow convergence of time-series plots of parameter estimates

e under-parameterized model
e scale of tuning parameters too small (acceptance rates too high)

* inappropriate priors (e.g., tree length)



Assessing MCMC Performance:

Diagnostics Based on Single Runs
MCMC pathologies

Decrease in time-series plot of InL estimates (‘burnout’)

e over-parameterized model
e poorly chosen/unrealistic priors

e one or more weak parameters (marginal posteriors & posteriors similar)



Assessing MCMC Performance:
Diagnostics Based on Single Runs

1. Convergence diagnostics
(i) Time-series plots of parameter estimates
* continuous parameters (e.g., substitution rates)--Tracer
e some parameters are more reliable than others
e steps may occur!

e discrete parameters (e.g., cumulative bi-partition frequency)--AWTY



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: AWTY plots of cumulative bi-partition frequency of 5 nodes

bad convergence better convergence
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Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(i) Form of the time-series plots of parameter estimates

* continuous parameters (e.g., substitution rates)--Tracer

warm and fuzzy caterpillars



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing better mixing
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Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing better mixing




Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(i) Form of the time-series plots of parameter estimates

* continuous parameters (e.g., substitution rates)--Tracer

warm and fuzzy caterpillars
e discrete parameters:

e distances among sampled topologies--TreeSetViz



Assessing MCMC Performance:

Diagnostics Based on Single Runs
TreeSetViz

Tree Set Visualization 2.1
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Assessing MCMC Performance:
Diagnostics Based on Single Runs
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Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(i) Form of the time-series plots of parameter estimates

* continuous parameters (e.g., substitution rates)--Tracer

warm and fuzzy caterpillars
e discrete parameters:

e distances among sampled topologies--TreeSetViz

(ii) Acceptance rates of parameter updates

e continuous & discrete parameters--MrBayes, BEAST, etc.
rates should ideally fall in the ~20-70% range



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing better mixing

s

s AR N
Acceptance rates for the moves in the "cold" chain of run 1: Acceptance rates for the moves in the "cold" chain of run 1:
With prob. Chain accepted changes to With prob. Chain accepted changes to
13.61 % param. 1 (revmat) with Dirichlet proposal 33.30 & param. 1 (revmat) with Dirichlet proposal
| 0.04 % param. 34 (rate multiplier) Dirichlet proposal] 119.13 % param. 34 (rate multiplier) Dirichlet proposal]
6.59 % param. 35 (topology and branch lengths) TBR 17.40 % param. 35 (topology and branch lengths) TBR

14.06 % param. 35 (topology and branch lengths) LOCAL 29.76 % param. 35 (topology and branch lengths) LOCAL



Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(i) Form of the time-series plots of parameter estimates

* continuous parameters (e.g., substitution rates)--Tracer

warm and fuzzy caterpillars
e discrete parameters:

e distances among sampled topologies--TreeSetViz

(ii) Acceptance rates of parameter updates

e continuous & discrete parameters--MrBayes, BEAST, etc.
rates should ideally fall in the ~20-70% range

* acceptance rates can be controlled by varying the scale of the
tuning parameters for the relevant proposal mechanisms

to increase rates, decrease scale & vice versa



Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(i) Form of the time-series plots of parameter estimates

* continuous parameters (e.g., substitution rates)--Tracer

warm and fuzzy caterpillars
e discrete parameters:

e distances among sampled topologies--TreeSetViz

(ii) Acceptance rates of parameter updates
e continuous & discrete parameters--MrBayes, BEAST, etc.

rates should ideally fall in the ~20-70% range

* acceptance rates can be controlled by varying the scale of the
tuning parameters for the relevant proposal mechanisms

to increase rates, decrease scale & vice versa

(iii) Form of the marginal posterior probability densities
e continuous parameters (e.g., substitution rates)--Tracer

beware of porcupine roadkill



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Parameter estimates for relative-rate multipliers from two MrBayes runs

bad mixing
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Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Parameter estimates for relative-rate multipliers from two MrBayes runs

bad mixing better mixing
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Acceptance rates for the moves in the "cold" chain of run 1:

With prob. Chain accepted changes to
1 (revmat) with Dirichlet proposal

Acceptance rates for the moves in the "cold" chain of run 1:

With prob. Chain accepted changes to
13.61 % param. 1 (revmat) with Dirichlet proposal 33.30 % param.

param. 34 (rate multiplier) Dirichlet proposal
param. 35 (topology and branch lengths) TBR
param. 35 (topology and branch lengths) LOCAL

0.04 % param. 34 (rate multiplier) Dirichlet proposal 19.13 %
6.59 % param. 35 (topology and branch lengths) TBR 17.40 %
14.06 % param. 35 (topology and branch lengths) LOCAL 29.76 %



Assessing MCMC Performance:

Diagnostics Based on Single Runs
2. Mixing diagnostics
(iv) Autocorrelation time (ACT) of parameter samples

* The lag & autocorrelation \rho_k is the correlation every draw and its it/ lag:

D vy it (CAeT)
Z?:l(%' — )

We would expect the 4t/ lag autocorrelation to be smaller as & increases (our 1st
and 100th draws should be less correlated than our 1st and 2nd draws).

If autocorrelation is still relatively high for higher values of %, this indicates high
degree of correlation between our draws and slow mixing.
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Assessing MCMC Performance:
Diagnostics Based on Single Runs

. Mixing diagnostics

(iv) Autocorrelation time (ACT) of parameter samples

better mixing bad mixing
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Assessing MCMC Performance:
Diagnostics Based on Single Runs

3. Sample-size diagnostics
(i) Effective Sample Size (ESS) diagnostic
e number of samples/autocorrelation time (ACT)

* continuous parameters (e.g., substitution rates)--Tracer



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: ESS values for relative-rate multipliers from two MrBayes runs

low intensity

Tracer
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Assessing MCMC Performance:
Diagnostics Based on Single Runs

3. Sample-size diagnostics
(i) Effective Sample Size (ESS) diagnostic
e number of samples/autocorrelation time (ACT)

* continuous parameters (e.g., substitution rates)--Tracer

(ii) Form of the marginal posterior probability densities
e continuous parameters (e.g., substitution rates)--Tracer
brother of porcupine roadkill

ensure SAE compliance!



Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Parameter estimates for mean-rate multipliers from BEAST runs

low intensity better intensity

meanRate

1M cycles 5M cycle

e inadequate chain length




Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Parameter estimates for mean-rate multipliers from BEAST runs

low intensity better intensity

meanRate

1M cycles 10M cycles

e inadequate chain length




Assessing MCMC Performance:
Diagnostics Based on Single Runs

Example: Parameter estimates for relative-rate multipliers from two MrBayes runs

low intensity better intensity

meanRate

1M cycles 40M cycles



Assessing MCMC Performance:

Diagnostics Based on Single Runs
MCMC pathologies

Parameter interaction between 1+G mixture for among-site rate variation




Assessing MCMC Performance:

Diagnostics Based on Single Runs
MCMC pathologies

Parameter interaction between 1+G mixture for among-site rate variation
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e multi-modal marginal densities stem from non-identifiability

e use G with additional discrete rate categories



Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Robot Squadron!!




Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Robot Squadron!!




Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

A slightly more formal description...

To facilitate mixing over the joint posterior probability density, multiple

incrementally heated chains may be run

N chains are initiated from random starting point in the joint posterior probability density.

One chain is cold, and N-1 are incrementally heated.

Samples are drawn from the cold chain.

The heating distorts the joint posterior probability density, such that chains can more freely

traverse regions of the stationary distribution.

Occasionally, a swap is attempted between the cold and one of the randomly chosen heated
chains, which ensures that samples are drawn from regions of high posterior probability.

heat of chain i = 1/(1 +iT)

chain 0.25
1 1.00
2 0.80
3 0.66
4 0.57

0.20

1.00
0.83
0.71
0.62

0.15

1.00
0.87
0.77
0.69

0.10

1.00
0.91
0.83
0.77



Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Diagnosing MC’ performance

The primary diagnostic is the acceptance rates for proposed chain swaps:
As a rule of thumb, acceptance rates for proposals should fall in ~20-70% range

* if acceptance rates are too low, decrease the value of the temperature parameter
* if acceptance rates are too high, increase the value of the temperature parameter



Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Example: Tracer plots of relative-rate multipliers from two MrBayes runs

bad mixing better mixing
Chain swap information for run 1: Chain swap information for run 1:
1 2 3 4 1 2 3 4
1 9.01 0.00 @.00 1 0.60 @.32 0.17
2 1666381 0.01 @.00 2 834663 @.65 0.40
3 1666964 1664302 @.20 3 832631 834125 0.70
4 1666923 1668351 1667079 4 831509 834020 833052
Chain swap information for run 2: Chain swap information for run 2:
1 2 3 4 1 2 3 4
1 0.00 0.00 @.00 1 0.60 0.32 0.17
2 1664180 0.16 @.00 2 833614 @.65 0.40
3 1667247 1669245 @.04 3 834623 833715 0.70
4 1665043 1667632 1666653 4 833536 832594 831918




Approximating the Joint Posterior Probability
Density with Metropolis-Couples MCMC

Diagnosing MC’ performance

The primary diagnostic is the acceptance rates for proposed chain swaps:
As a rule of thumb, acceptance rates for proposals should fall in ~20-70% range

¢ if acceptance rates are too low, decrease the value of the temperature parameter
* if acceptance rates are too high, increase the value of the temperature parameter

Other aspects controlling the behavior of the Metropolis coupling can be modified to
improve MCMC performance:

* increase the number of incrementally heated chains (e.g., nchains parameter)
* increase the frequency of attempted chain-swap events (e.g., swapfreq parameter)
¢ increase the number of swaps attempted per event (e.g., nswaps parameter)
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Assessing MCMC Performance:
Diagnostics Based on the Prior

Estimating under the prior...

Marginal posterior densities for parameters are updated versions of the
corresponding prior probability densities: they are updated by the
information in the data via the likelihood function

likelihood function prior probability
posterior probability
Pr[ X |7,] x Pr[z,]

Prit | X] =—
2 "'Pr[X 17,] x Pr{, ]

marginal likelihood




Assessing MCMC Performance:
Diagnostics Based on the Prior

Estimating under the prior...

Marginal posterior densities for parameters are updated versions of the
corresponding prior probability densities: they are updated by the

information in the data via the likelihood function

We can compare the marginal prior densities to their posterior counterparts

to help identify weak parameters

e MCMC can be run to target the joint prior either by estimating with no

data or by forcing the likelihood function return 1.

R = min| 1,

). £(©) f(e1e)

)

f(®) fle1e)

likelihood ratio prior ratio  proposal ratio
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Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

The general idea is to compare estimates from multiple independent chains
initiated from random parameter values

Form of the marginal posterior densities for all parameters

* continuous parameters (e.g., substitution rates)--Tracer



Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

Example: Tracer plots of marginal densities from multiple MrBayes runs

bad convergence better convergence
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*Tracer demo



Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

The general idea is to compare estimates from multiple independent chains
initiated from random parameter values
Form of the marginal posterior densities for all parameter
¢ continuous parameters:

» PSRF diagnostic--MrBayes

1. Run m > 2 chains of length 2n from overdispersed starting values.
2. Discard the first n draws of each chain.
3. Calculate the within-chain and between-chain variance.

4. Calculate the estimated variance of the parameter as a weighted sum of the within-chain
and between-chain variance.

5. Calculate the PSRF.



Diagnostics Based on Multiple Runs

Example: PSRF values for relative-rate multipliers from two MrBayes runs

bad convergence

Parameter

Assessing MCMC Performance:

95% Cred.

Interval

TL{all}
kappa{4,5}
alpha{5}
pinvar{l}
m{l}

m{2}

m{3}

m{4}

m{5}

.921609
.095696
.006544
.307396
.264226
.040919
.721453
.125810
.188768

.998138
.054125
.087721
.009357
.009315
.000227
.157157
.568002
.004373

.836000
.667623
.606472
.095913
.146502
.022205
.039001
.199137
.109303

.295000
.587024
.738482
.471070
.421870
.065884
.544253
.044249
.295129

.056000
.085271
.950093
.316173
.244468
.037425
.030560
.917338
.170624

better convergence

Parameter

Variance

95% Cred.

Interval

TL{all}
kappa{2,3}
m{l}

m{2}

m{3}

.073893
.236308
.285838
.423906
.589346

.000034
.366904
.028345
.015507
.005341

.063000
.199024
.980634
.182596
.453175

.086000
.587719
.630387
.664627
.736459

.074000
.190195
.278161
.423610
.587617



Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

The general idea is to compare estimates from multiple independent chains
initiated from random parameter values
Form of the marginal posterior densities for all parameter
¢ continuous parameters:
* similarity of marginal densities--Tracer

» PSRF diagnostic--MrBayes
e discrete parameters:

* Topology
e similarity of paired chains (e.g., ASDSF diagnostic in MrBayes)



Assessing MCMC Performance:

Diagnostics Based on Multiple Runs

MCMC pathologies
Time-series plot of ASDSF diagnostic

ASDSF

0.01 -

e stop sampling when ASDSF < 0.01

e under-parameterized model



Assessing MCMC Performance:

Diagnostics Based on Multiple Runs

MCMC pathologies
Time-series plot of ASDSF diagnostic

ASDSF

0.01 -

e ASDSF oscillate about the 0.01 threshold value
e over-parameterized model

e poorly chosen priors



Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

The general idea is to compare estimates from multiple independent chains
initiated from random parameter values
Form of the marginal posterior densities for all parameter

* continuous parameters (e.g., substitution rates)--Tracer

e discrete parameters:
* Topology
e similarity of paired chains (e.g., ASDSF diagnostic in MrBayes)
e distances among sampled topologies--TreeSetViz/TreeScaper

* split frequencies & presence/absence--AWTY
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Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

Example: split frequencies & presence/absence in AWTY

bad convergence
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Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

The general idea is to compare estimates from multiple independent chains
initiated from random parameter values
Form of the marginal posterior densities for all parameter
* continuous parameters (e.g., substitution rates)--Tracer
e discrete parameters:
* Topology
e similarity of paired chains (e.g., ASDSF diagnostic in MrBayes)
e distances among sampled topologies--TreeSetViz/TreeScaper
* split frequencies & presence/absence--AWTY/BPD
* nodal support--AWTY/MrBayes



Assessing MCMC Performance:
Diagnostics Based on Multiple Runs

Example: ‘comparetrees’ plot of trees sampled by two MrBayes runs

bad convergence better convergence
S 2
— . .q e T,
o ° S0 b
e o
oo © .. i .lh
o o
° o o (]
© ‘/ |
100 0 50 100

Nylander et al. (2008)



Summary: Some General Strategies for Assessing
MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when
something has gone wrong. Gelman

1. When do you need to assess MCMC performance?
2. When should you assess the performance of individual runs?
3. Which diagnostics should you use to assess individual runs?
that are relevant for the models/parameters you are estimating under

4. When is a single run sufficient to assess MCMC performance?

5. When should you estimate under the prior?
(and be wary of programs where it is not possible)



Summary: Some General Strategies for Assessing
MCMC Performance

You can never be absolutely certain that the MCMC is reliable, you can only identify when
something has gone wrong. Gelman

6. When should you use Metropolis-Coupling?
Whenever you cannot be certain that standard MCMC is adequate

i.e., (and be wary of programs where it is not possible)

7. When should you perform multiple independent MCMC runs?
(and be wary of pseudo-independence)

8. Which diagnostics should you use to assess individual runs?
that are relevant for the models/parameters you are estimating under

9. How many independent MCMC runs are sufficient?
(i.e., as many as you think your data/problem deserve)

10. How long should you run each MCMC analysis?
li.e., as long as you think your data/problem deserve)



Tracer
AWTY (BPD)
TreeSetViz
TreeScaper

BOA

coda

Assessing MCMC Performance:
Software Tools



