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Statistical Phylogenetic Approaches for
the Study of Diversification Rates

Statistical paradigm

pose a substantive question

develop a stochastic model with
parameters that, if known, would
answer the question

collect observations that are
informative about model parameters

find the best estimate of the model
parameters using some method
conditioned on the data at hand

from the Huelsenbook

Statistical phylogenetic paradigm

What is the net rate of diversification
in my study group?

develop a phylogenetic model that
includes a parameter for net
diversification-rate

collect a sample of sequence data
from the study organisms

find the best estimate of the
phylogenetic model parameters using
ML or Bayesian inference



Outline: Phylogenetic Approaches For
Exploring Rates of Lineage Diversification

l. What are the fundamental questions specific to this research area?
A beginners guide to the types of methods available

ll. What phylogenetic information is relevant to inferring diversification rates?
Tree-based observations come in two flavors

lll. What models are typically used to infer rates of lineage diversification?
Choosing the right tool for the job at hand

IV. How do we estimate under these lineage diversification models?
Different approaches and different statistical frameworks

V. Some considerations regarding the application of these methods
Hidden assumptions, if violated, can spoil a nice study



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree

Has the tree diversified under a stochastically constant rate?
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Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree

ll. Locating significant diversification rate shifts along branches

Along which branches have significant rate shifts occurred?
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Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree

ll. Locating significant diversification rate shifts along branches

Along which branches have significant rate shifts occurred?
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Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time

Have tree-wide rates of diversification changed through time?

Cwilsoniana
= Cparviflora
&= Coligophlebia
Camomum
Coblique
= Cwalteri
& Ckoehneana
r— Cpaucinervis
e C sanguinea
= Culotricha
e macrophylla
= Cpumila
= Calba
Calpina
Cpoliophylla
C bretschneideri
Cmonbeigii
Chemsleyi
Calsophila
Cschlinderi
Cstracheyi




Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lil. Identifying significant diversification rate shifts through time

Have tree-wide rates of diversification changed through time?
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Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches
lll. Identifying significant diversification rate shifts through time

IV. Evaluating correlates of differential diversification rates

Are diversification rates correlated with other evolutionary variables?
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Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process

What are the absolute rates of the branching process?

* speciation rate, A

* extinction rate, U

- diversification rate, 9 = (A - 1)

- relative extinction rate, € = (L /A)



Outline: Phylogenetic Approaches For
Exploring Rates of Lineage Diversification

l. What are the fundamental questions specific to this research area?
A beginners guide to the types of methods available

ll. What phylogenetic information is relevant to inferring diversification rates?
Tree-based observations come in two flavors

lll. What models are typically used to infer rates of lineage diversification?
Choosing the right tool for the job at hand

IV. How do we estimate under these lineage diversification models?
Different approaches and different statistical frameworks

V. Some considerations regarding the application of these methods
More cautionary tales to alarm the uninitiated



What Are the Basic Phylogenetic Data for
Inferring Diversification Rates?

Topological Information Temporal Information

Distribution of species diversity across the tree Distribution of speciation events through time



These Pseudo-data Are the Realization of a
Stochastic Process

Topological Information Temporal Information

The primary phylogenetic ‘observations’—both the topological distribution of species
diversity and the temporal distribution of waiting times—arise via stochastic processes

These ‘observations’ are estimates from data (and therefore associated with uncertainty)

The general approach is to compare our observations to expectations generated under
an appropriate stochastic branching processes



Outline: Phylogenetic Approaches For
Exploring Rates of Lineage Diversification

l. What are the fundamental questions specific to this research area?
A beginners guide to the types of methods available

ll. What phylogenetic information is relevant to inferring diversification rates?
Tree-based observations come in two flavors

lll. What models are typically used to infer rates of lineage diversification?
Choosing the right tool for the job at hand

IV. How do we estimate under these lineage diversification models?
Different approaches and different statistical frameworks

V. Some considerations regarding the application of these methods
More cautionary tales to alarm the uninitiated



Stochastic-Branching Process Models

“All models are wrong, but some are useful” Box (1976)

Common Stochastic-Branching Process (SBP) Models
Generalized Birth-Death (GBD: Kendall, 1948)
e M¢)and U (7)), A> W
Constant Birth-Death (CBD: Kendall, 1948)
e Aand WL, A> U
Generalized Pure Birth (GPB: Harris, 1964)
° M2), L =0

Constant Pure Birth (CPB: Yule, 1924)
A, L=0



Stochastic-Branching Process Models

“All models are wrong, but some are useful” Box (1976)

General properties of SBP Markov models

Assume A\(?) and/or L (¢) are:
e constant across all lineages at and instant

¢ independent across lineages at and instant

® occur instantaneously

A simple Yule simulation

Pr(\)
0.2

0.8

Pr(\) 1/5



Stochastic-Branching Process Models

“All models are wrong, but some are useful” Box (1976)

Some more exotic SBP models!
e non-Markov SBP models (Chan and Moore, 1999)
relax assumption that events are instantaneous

explicitty model the geographic context of speciation

e Multi-type SBP models

relax assumption that events are equiprobable across
all lineages at any instant



Outline: Phylogenetic Approaches For
Exploring Rates of Lineage Diversification

l. What are the fundamental questions specific to this research area?
A useful guide to the types of methods available

ll. What phylogenetic information is relevant to inferring diversification rates?
Tree-based observations come in two flavors

lll. What models are typically used to infer rates of lineage diversification?
Choosing the right tool for the job at hand

IV. How do we estimate under these lineage diversification models?
Different approaches and different statistical frameworks

V. Some considerations regarding the application of these methods
More cautionary tales to alarm the uninitiated



Statistical Inference Under Stochastic-Branching
Process Models

SBP models are employed in two qualitatively different ways

e null modeling approaches generate expectations against which we can compare
our phylogenetic ‘observations’—i.e., the topological distribution of species
diversity and the temporal distribution of waiting times

e model fitting approaches estimate parameters of the SBP models from the
phylogenetic ‘observations’—i.e., the topological distribution of species diversity
and the temporal distribution of waiting times



Statistical Inference Under Stochastic-Branching
Process Models

Inference under SBP models may exploit different statistical approaches

¢ Maximum Likelihood Estimation approaches involve numerical optimization
algorithms to identify the joint parameter estimates that collectively maximize
the profile likelihood of the phylogenetic ‘observations’ under the SBP model

* Bayesian approaches involve numerical algorithms to approximate the joint
posterior probability density of the SBP model parameters given the
phylogenetic ‘observations’

® Quasi-Bayesian approaches involve making ML estimates of the SBP model
parameters over a marginal posterior probability density of some aspect of the
phylogenetic ‘observations’




Why Pursue These Questions in a Bayesian
Statistical Framework?

Recent developments have largely been developed in Quasi-Bayesian ML framework
The study of diversification entails several sources of uncertainty

* phylogeny/topology

* branch lengths/durations

* rate parameters
* event histories

Bayesian framework provides a means for accommodating uncertainty

Exploit advantages of associated numerical and analytical techniques



Outline: Phylogenetic Approaches For
Exploring Rates of Lineage Diversification

l. What are the fundamental questions specific to this research area?
A useful guide to the types of methods available

ll. What phylogenetic information is relevant to inferring diversification rates?
Tree-based observations come in two flavors

lll. What models are typically used to infer rates of lineage diversification?
Choosing the right tool for the job at hand

IV. How do we estimate under these lineage diversification models?
Different approaches and different statistical frameworks

V. Some considerations regarding the application of these methods
More cautionary tales to alarm the uninitiated



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process



Detecting Diversification Rate Variation
Across Branches

Whole-Tree Model-Based Methods
(Chan & Moore, 2002; Moore, Chan & Donoghue, 2004) N




Detecting Diversification Rate Variation
Across Branches

Whole-Tree Model-Based Methods
(Chan & Moore, 2002; Moore, Chan & Donoghue, 2004) N

Topological approach

Combines individual ERM nodal probabilities over
infernal nodes as the product, M| |, sum, M>, which

may be weighted by the sample size of each node, M*]],
sum, M*>

Significance estimated by Monte Carlo simulation of the null
distribution of the test statistic under an ERM stochastic
branching process

Power: HIGH
+ statistically robust (accommodates phylogenetic

uncertainty, polytomies) E ln(n ,-) ln(P,. ) 2 ln(n : )R

+ can accommodate incomplete taxon sampling ) > _ =l

+ incorporates more of the tree

- does not identify anomalously large/small groups Eln(n{.) Eln(ni)



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process



Locating Shifts in Diversification Rate
Along Branches

Relative Cladogenesis Statistic
(Purvis et al., 1995)

Incorporates information on the topological distribution 1y
of species diversity of contemporaneous lineages

Compares observed topological distribution of
descendant lineages to expectations under Yule
stochastic branching process model

Uses implicit parsimony to assign rate shifts to
infernal branches

-susceptible to rate trickle-down problem




Locating Shifts in Diversification Rate

Along Branches

AIC Model-Fitting
(Alfaro et al., 2009)

Incorporates information on the topological distribution
of (unsampled) species diversity of dated lineages

lteratively assess the fit of these data to a set of &
candidate rate-parameter models using ML

Selects among the set of % rate-parameter models
using AIC

+allows inclusion of unsampled species

-small subset of models evaluated

-AIC model choice may be biased

-simple rate estimators

-does not accommodate phylogenetic uncertainty

-susceptible to rate trickle-down problem
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Locating Shifts in Diversification Rate
Along Branches

ML Model-Fitting
(Moore et al., 2004)

lterative maximum likelihood model-fitting approach Ingroup
(Sanderson & Donoghue, 1994) loft

Outgroup right

Three-taxon tree framework
Equal-rates Markov (ERM) branching process

Simplified: one- and two-rate parameter models only,

I 1 t d LRH4:Ho
do not integrate through time neste

Generalized: iterated over all internal branches A .



Locating Shifts in Diversification Rate
Along Branches

Likelihood Calculations

N P(N')\.,l‘)=e—)»t(1_e_m)]\f_l

{ (Kendall, 1948; Harris, 1964)

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

Likelihood Calculations: One-Rate Parameter Model (Ho)

P(6r1H,)=— P(£1A,0)P(r1A,t)

N Y P(i1 4.t)P(N =il A.t)
i=1

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

Likelihood Calculations: Two-Rate Parameter Model (Ha)

P(LrIH,) = — P(L1 A 0)P(r! A )

N 1P(i|)y,t)P(N—iI)»r,t)

i=

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

Likelihood Ratio of One- & Two Rate Parameter Models

( (
LR, , ~In|— P(£ 1A, 0)P(rlAt) | — P(¢,r | At)
Y P(n;1 4, .t)P(N = n, | 2,.t) Y P(n, 1 At)P(N = n, | A1)
\ i1 \ i=1 /
(two-rate model) (one-rate model)

* assess significance by Monte Carlo simulation

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

The ‘Trickle-Down’ Problem

7\5-'/-' }‘I”

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

The ‘Trickle-Down’ Problem

7\5-'/-' }‘I”

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

The ‘Trickle-Down’ Problem

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

The A1 Shift Statistic

Ingroup

Outgroup left right

nested LRHA:Ho

inclusive LRHA:Ho

A = (LRHA:HOnOG : nIG) - (LRHA:HOnIGL : nIGR)

(inclusive node) (nested node)

Moore, Chan & Donoghue (2004)



Locating Shifts in Diversification Rate
Along Branches

Wy

<

I

wt

A1 shift statistic
relative cladogenesis statistic

Moore & Donoghue (American Naturalist, 2007)



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process



Locating Shifts in Diversification Rate
Through Time

Lineage-Thru-Time Plots
(e.g., Nee et al., 1992, 1994q,b) T

Semi-logarithmic accumulation of lineages

Primarily descriptive, characterized by:

* Push of the Past — _L—.
- slope = diversification rate, 9 = (A, - 1) e 1 B T

If extinction rate, 1 =0, also characterized by: - 2

* Pull of the Present ]

* increased offset slope b-d

* asymptotic behavior under random sub sampling J
100 5

number of lineages




Locating Shifts in Diversification Rate
Through Time

Gamma Statistic
(Pybus & Harvey, 2001)

Based on the average distance of branching
events relative to the root

* assumes constant rates across |ineages

* can accommodate incomplete and RANDOM
species sampling

* can ONLY detect diversification rate decreases
but NOT diversification rate increases

* Power: FAIR (if N is large and ~ 1= 0)




Locating Shifts in Diversification Rate

Through Time

BDL Method
(Rabosky, 2006)

Based on the relative MLEs of the estimated

waiting times under RC and RV models

* calculated as DeltaAlCrc

* compare fest statistic to distribution generated by
Monte Carlo simulation under a Yule model

* can detect rate decreases and rate increases
(sort of, if u=20)

* assumes constant rates across lineages

* assumes complete/random sampling

* Power: Good (if V is large and L= 0, trees
are large sampling is complete, and no
diversification rate variation across lineages)

AAICRC — AICRC — AICRV

Log (Lineages)

Log-Likelihood

30 25 20 -15 -10 -5 0
Time Before Present (mya)



Locating Shifts in Diversification Rate
Through Time

‘Density-dependent’ diversification

LTT plots estimated from empirical data
exhibit pervasive rate decreases through time

* rate-constant and more complex multi-rate models
are fit to the ‘observations’

* standard statistical methods are then used to
select among the models

N
|

The better fit of rate-variable models to
phylogenetic ‘observations’ has been used to
argue for a deterministic causal mechanism

Log (lineages)

* diversification is regulated by ecological/
geographic interactions among species

It is critical to assess the adequacy of these
inferences, as it is known that violation of the | | | [ | |

assumptions leads to identifiability problems 10 08 06 04 02 00
Relative divergence time

* an infinite number of models can generate an
identical LTT plot if assumptions are not met

(Kubo & Iwasa, 1995) (e.g., Rabosky, 2009)



Locating Shifts in Diversification Rate
Through Time

Methodological Concerns

50
!

Effects of branch-length estimation biases Original data

Pruned randomly to 80%
Pruned randomly to 60%
Pruned randomly to 40%
Deep nodes sampled 80%

* substitution-rate profile may lead to systematic

estimation bias of deeper/shallower nodes
(e.g., Revell et al., 2005)

Deep nodes sampled 60%
Deep nodes sampled 40%

EECOOCENE

20
!

Departure from random species sampling

* more realistic taxon sampling may produce
spurious decrease in rate
(e.g., Cusimano & Renner, 2010)

10
|

log(N)

Effects of among-lineage rate variation

* violation of stochastically constant rates across o
lineages may produce spurious rate decreases

Effects of model-selection bias

* reliance on AIC may lead to inflated rejection of
simpler rate constant models

Effects of phylogenetic uncertainty
* reliance on point estimates of phylogeny and .

: > 3 = | I | I I I I !
divergence times may render inferences unreliable = @8 = 3 1 1= & &

Time in My



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process



Evaluating Correlates of Differential
Diversification Rates

Two fundamentally different types of questions:

Is there a general correlation between trait state and diversification rate?

e.g., Are nectar spurs correlated with increase rates of diversification?

Is there a correlation between a specific event and and diversification rate?

e.g., Was a particular origin of nectar spurs in columbines correlated with increase
rates of diversification?



Evaluating Correlates of Differential
Diversification Rates

Recent advances for evaluating diversification-rate correlates

Stochastic character mapping; keymap (Ree, 2005)

CVPPD; tRate (Moore & Donoghue, 2009)

*SSE model; DiversiTree (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010...)



Evaluating Correlates of Differential
Diversification Rates

Cwilsoniana
C parviflora
Coligophlebia
Camomum
Coblique
Cwalteri

C koehneana
C paucinervis
Csanguinea

C ulotricha
Cmacrophylla
C pumila
Calba
Calpina

C poliophylla
@ Cbretschneideri
@ Cmonbeigii

@ Chemsleyi
‘ @ Calsophila
@ Cschlinderi
@ Cstracheyi

Relies on stochastic character mapping (e.g, Neilsen, 2002; Huelsenbeck et al., 2003)

Ree (Evolution, 2005)



Evaluating Correlates of Differential
Diversification Rates
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Ree (Evolution, 2005)



Evaluating Correlates of Differential
Diversification Rates

Ree (Evolution, 2005)

=
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Evaluating Correlates of Differential
Diversification Rates

Ree (Evolution, 2005)
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Evaluating Correlates of Differential

Diversification Rates
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Evaluating Correlates of Differential

Diversification Rates

Cwilsoniana
C parviflora

Coligophlebia

Camomum

Coblique
Cwalteri

C koehneana
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Csanguinea —
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Ree (Evolution, 2005)

Calba
Calpina

C poliophylla
@ Cbretschneideri
@ Cmonbeigii

@ Chemsleyi
‘ @ Calsophila
@ Cschlinderi
@ Cstracheyi

C macrophylia 50 b i



Evaluating Correlates of Differential
Diversification Rates
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Ree (Evolution, 2005)



Evaluating Correlates of Differential
Diversification Rates
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Ree (Evolution, 2005)



Evaluating Correlates of Differential
Diversification Rates

Cwilsoniana
C parviflora
Coligophlebia
Camomum
Coblique
Cwalteri
L @ Ckoehneana
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Ree (Evolution, 2005)



Evaluating Correlates of Differential

Diversification
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Evaluating Correlates of Differential
Diversification Rates

Cwilsoniana
C parviflora
Coligophlebia
Camomum
Coblique
Cwalteri

L @ Ckoehneana
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@& Csanguinea
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I @ Cpumila
: @ Calba
@ Calpina
@ Cpoliophylla
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. @ Calsophila =
@ Cschlinderi 5
o obs

Cstracheyi

Trait B
P<0.01

o 400

f (5null)

Ree (Evolution, 2005) .
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Evaluating Correlates of Differential
Diversification Rates

Recent advances for evaluating diversification-rate correlates

Stochastic character mapping; keymap (Ree, 2005)

CVPPD; tRate (Moore & Donoghue, 2009)

*SSE model; DiversiTree (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010...)



Cross-Validation Predictive Densities

T\\%L!J UH LISJL;.-..' T L ugt o Step 1. Jointly estimate phylogeny and divergence times

Moore & Donoghue (PNAS, 2009)



Cross-Validation Predictive Densities
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Moore & Donoghue (PNAS, 2009)



Cross-Validation Predictive Densities
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Moore & Donoghue (PNAS, 2009)
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Cross-Validation Predictive Densities
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Moore & Donoghue (PNAS, 2009)



Cross-Validation Predictive Densities
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Moore & Donoghue (PNAS, 2009)
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Evaluating Correlates of Differential
Diversification Rates

Recent advances for evaluating diversification-rate correlates

Stochastic character mapping; keymap (Ree, 2005)

CVPPD; tRate (Moore & Donoghue, 2009)

*SSE model; DiversiTree (Maddison et al., 2007; Fitzjohn et al., 2009; Fitzjohn, 2010...)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Motivation: Imagine that we see a preponderance of species with a given state

Growth Form @ woody @ herbaceous
000000000000000000000000000000000000000000000000000000000000000

L‘EHL.UT_L.U G [ O T [ o L e [ e

Explanations include:

increased woody speciation rate )\.
decreased woody extinction rate U o
decreased herb speciation rate )\.
increased herb extinction rate U e

biassed exchangeability rate e

Maddison (Evolution, 2006)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Solution: Specify a model that includes the parameters to tease these scenarios apart

000000 O >\0

I T A

TJ Ho
I 1
do1

d10
Solve numerically with PDEs:

Do(t +0t) = (1 — podt)[(1 — go16¢)(1 — Agdt)Dno(t) + (go10t)(1 — Aodt) D1 (t)
+(1 — qo10t)(Aodt) Eo(t) Dno(t) + (1 — qo16t)(Aodt) Eo(t) Do (t)] + (10dt)0

D1 (t+6t) = (1 = u1dt)[(1 — q100t) (1 — A16¢) D (f) + (q100t) (1 — A1dt) Dno(t)
+(1 — q100t)(A168) E1 (t) D1 (t) + (1 — quodt)(A168) E1(t) D1 (t)] + (116¢)0

Maddison et al. (Syst Biol, 2007)

speciation rate for state 0
speciation rate for state 1
extinction rate for state 0
extinction rate for state 1

rate of change to state 1

rate of change to state 0



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

Solution: Specify a model that includes the parameters to tease these scenarios apart

000000 O >\0

I T A

TJ Ho
I 1
do1

d10
Solve numerically with PDEs:

speciation rate for state 0
speciation rate for state 1
extinction rate for state 0
extinction rate for state 1

rate of change to state 1

rate of change to state 0

Eo(t + dt) = podt + (1 — podt)(1 — qo10t)(1 — Aodt) Eo(t) + (1 — podt)

(qu 5t) (1 - )\O(St)El

(t) + (1 — podt) (1 — go16t)(Aodt) Eo(t)*

El(t + 5t) — /115?5 i (1 - /L15t)(1 —= (J1o5t)(1 - )\15t)E1 (t) + (1 - ,LL15t)

(qloét) (1 - )\1 5t)E0

Maddison et al. (Syst Biol, 2007)

() + (1 — p16t)(1 — quodt) (A1 0t) Ex (t)?



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no speciation no speciation speciation & extinction speciation & extinction

N N N N
t 10 t 10 tTo T T tJTo
t+ ot 4+ 0 t+ot+1 t + ot £0 FF ot 10

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no specia’rion no speciation speciation & extinction speciation & extinction
t—|—5t! t+5t!1 t—|—5t! t—|—5t!

PDEs for branch probabilities: Dno(t + 6t)
(1— ,LLOCSt) no extinction in the interval

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no speciq’rion no speciation speciation & extinction speciation & extinction
t—|—5t! t+5t!1 t—|—5t! t—|—5t!

PDEs for branch probabilities: Dno(t + 6t)
(1— ,LLOCSt) no extinction in the interval

[(1 — qo16t)(1 — Agdt)Dno(t) no state change, no speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no speciq’rion no speciation speciation & extinction speciation & extinction
t—|—5t! t+5t!1 t—|—5t! t—|—5t!

PDEs for branch probabilities: Dpno(t + 6t) =
(1 — podt)

[(1 — qo16t)(1 — Agdt)Dno(t) no state change, no speciation
+(Q015t>(1 — )\05t)DN1( )

no extinction in the interval

state change, no speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change,
no speciq’rion no speciation

t—|—5t! t+5t!1 t—|—5t! t—|—5t!

PDEs for branch probabilities: Dpno(t + 6t) =
(1 — podt)

(1 = go16¢)(1 = AoSt) Do (1)

+(qo16t) (1 — Xg6t) D1 (2)

+(1 — qo10t) (Agdt) Eo(t) Dno(t)

Maddison et al. (Syst Biol, 2007)

no state change, no state change,
speciation & extinction speciation & extinction

no extinction in the interval
no state change, no speciation
state change, no speciation

no state change, speciation & extinction



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change,
no speciq’rion no speciation

t—|—5t! t+5t!1 t—|—5t! t—|—5t!

PDEs for branch probabilities: Dpno(t + 6t) =
(1 — podt)

(1 = go166)(1 — Aodt) Divo (1)

+(qo10t) (1 — Agdt) D1 ()

+(1 — q016¢)(Aodt) Eo(t) Dno(t)

+(1 — qo16t)(Aodt) Eg(t) Dno(t)]

Maddison et al. (Syst Biol, 2007)

no state change, no state change,
speciation & extinction speciation & extinction

no extinction in the interval

no state change, no speciation

state change, no speciation

no state change, speciation & extinction

no state change, speciation & extinction



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

no state change, state change, no state change, no state change,
no speciq’rion no speciation speciation & extinction speciation & extinction
t—|—5t! t+5t!1 t-|-5t! t—|—5t!

PDEs for branch probabilities: Dno(t + 6t)
(1- 0575)
(1 = go16¢)(1 = AoSt) Do (1)
+(qo10t) (1 — Agdt)Dpn1(t)  state change, no speciation
(2)
]

no extinction in the interval

no state change, no speciation

no state change, speciation & extinction

‘|‘(1 — quét)()\05t)E0( )DNO

‘|‘(1 - qO15t)()\05t)E0( )DNO( )
+(podt)0 i extinct, zero probability of being observed

no state change, speciation & extinction

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since ¢ extinction since ¢ of both since ¢
T T T
t—0 t4+0 t+1 T t40
t+ 6t L0 t+5t10 t+5tjgo XA

Extinction scenarios

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since ¢ extinction since ¢ of both since ¢
T T T
t—0 t40 t+1 T 40
t+ 6t 10 t+ 6t 4 0 t+ 6t 1 0 EXEL
PDEs for branch probabilities: Eo(t+ 0t) =

oot  extinction in the interval

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since ¢ extinction since ¢ of both since ¢
T T T
t—0 t40 t+1 T 40
t+ 6t 10 t+ 6t 4 0 t+ 6t 1 0 EXEL
PDEs for branch probabilities: Eo(t+ 0t) =

oot  extinction in the interval

+(1 — podt)(1 — go16t)(1 — Agdt)Eg(t) no state change, no speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since ¢ extinction since ¢ of both since ¢
T T
t—0 t40 t+1 T 40
t+ 6t 10 t+ 6t 4 0 t+ 6t 1 0 EXEL
PDEs for branch probabilities: Eo(t+ 0t) =

oot  extinction in the interval
+(1 — podt)(1 — go16t)(1 — Agdt)Eg(t) no state change, no speciation
+(1 — podt)(qo10t)(1 — A\gdt)E1(t) state change, no speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

extinction in no state change, state change, no state change,
interval no speciation, no speciation, speciation, extinction
extinction since ¢ extinction since ¢ of both since ¢
T T
t—0 t40 t+1 T 40
t+ 6t 10 t+ 6t 4 0 t+ 6t 1 0 EXEL
PDEs for branch probabilities: Eo(t+ 0t) =

oot  extinction in the interval
+(1 — podt)(1 — go16t)(1 — Agdt)Eg(t) no state change, no speciation
+(1 — podt)(qo10t)(1 — A\gdt)E1(t) state change, no speciation
+(1 — podt) (1 — go16t)(Aodt)Eg(t)?>  no state change, speciation

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

We start at the tips of the tree and move root-ward in small increments...

N

t
t+ ot

0
0

If N is a tip species with state 1:

Dpno(tg) =0
D (o) = 1

If N is a tip species with state O:
Dpno(tg) =1
Dn1(tg) =0

Maddison et al. (Syst Biol, 2007)

N

t+ot+1



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

solving coupled differential equations to obtain conditional branch probabilities...

N N

0 t+1
0 t+ot+1

t
t+ ot

We take the derivative of the PDEs to shrink Ot:

dD

dévo = —(Xo + o + q01)Dno(t) + go1 D1 (t) + 200 Eo(t) Do (t)
dD

dé\ﬂ = —(A1 + p1 + q10)Dn1(t) + qroDno(t) + 2A1 E1(t) D1 (t)

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

and then combine branch probabilities at internal nodes...

N M

o

Dao(ta) = Dno(ta)Daro(ta)ro

Dai(ta) = Dni(ta)Dai(ta) M

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

Binary-State Speciation Extinction (BiSSE) Model

and at the root scale the conditional probabilities by the stationary frequencies

L R

o

Dy = Dgro(tr)mo

D1 = Dpgi(tr)m

Maddison et al. (Syst Biol, 2007)



Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

Davis et al. BMC Evolutionary Biology 2013, 13:38

http://www.biomedcentral.com/1471-2148/13/38
i BMC

Evolutionary Biology

RESEARCH ARTICLE Open Access

Exploring power and parameter estimation of the
BiSSE method for analyzing species diversification

Matthew P Davis'’, Peter E Midford” and Wayne Maddison’

Davis et al. (BMC Biology, 2013)



Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

Set 1: )\. 75)\.
Yo = litq
(Jeo =(oe

Set 2: )\. = )\.
b= liig
(oo +({ce

Set3:  Ae=Ae
Ha ;é:uo
Jeo =(oe

***Assuming no phylogenetic uncertainty

Davis et al. (BMC Biology, 2013)

a Speciation * kK
sr 50 taxa
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Fiaure 1 Power of BiSSE under simulations with asvmmetrical




Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

[ a Speciation

Conclusion N

The power of the BiSSE likelihood method to test hy- .
potheses of rate asymmetry is susceptible to both tree '
size and variation in parameter rates. Overall, power of —

the BiSSE method is low if the tree size is below 300 " """
taxa, and investigators should take special care to inves-
tigate the power of their results if applying the BiSSE
method to topologies with fewer than 300 tips. Power is \
increased when estimating fewer parameters, so utilizing | \
a four parameter model to test hypotheses may be pre-
ferable if appropriate. m w
This study indicates that contrary to the hope
expressed in Maddison [20], the problem of con-
founding effects can still occur while estimating
process parameters simultaneously if there is low
sample size and/or high tip ratio bias. Under scenar- \\
p—

:

2x 3x 4x 5x 10x

(3:1) 6,:1,) (9,:1) (12;:1) (27,:1,)
Difference in Rates (Character State Tip Ratios)

Fiaure 1 Power of BiSSE under simulations with asvmmetrical

Davis et al. (BMC Biology, 2013)




Evaluating Correlates of Differential
Diversification Rates

How well can we do inference under the BiSSE model?

Aa=Ae

a Speciation

75 50 taxa o
*—100 taxa T,
50 300 taxa
~e~ 500 taxa .

Set 1:

Table 2. BiSSE models tested. Model name includes number of parameters for that model. Model 5d has some support under AIC, optimal
model is bold. Parameters not mentioned in models were allowed to vary independently of each other. Parameter values are harmonic means

taken over the sample of 600 trees. Eggs symbolize rates under oviparity; snakes symbolize viviparity

Speciation Extinction rate (u) Character state
rate (4) transition rate (q)

Model Parameters LnL » A FA. O.e. .0 AIC  AAIC
6 All rates variable 0.113  0.196 233e-6 3.62-7 00282  0.0031  -1283 19.13
Sa Speciation rates equal (Aovip = Avivip) 647.8 0.193 0.193 3.874e-6 6.350e-6 6.770e-7 0.0102 -1286 16.39
5b Extinction rates equal (Movip = Hyivip) 647.8 0.093 0.193 4925¢-6 4.925¢-6 1.355¢-6 0.0104 -1286 16.45
S¢ Character state transition rates equal 646.7 0.113 0.197 2.635¢-6 1.350e-6 0.0031 0.0031 -1283  18.65

(qovip to vivip = qvivip to ovip)
5d Dollo transition rates (¢vivip to ovip = 0) 654.0 0.122 0.196 1.039e-6 1.042¢-6 0.0416 1.000e-=7 -—1298 4.00
4a lovip = Avyivips Movip = Myivip 646.7 10.196 0.196 2.493e-6 2.493¢-6 0.0282 0.0031 -1285 16.65
3a Aovip ™ Avivip» Movip ™ Mvivips 646.7 10.197 0.197 1.159e-6 1.159¢-6 0.003 0.003 -1287 14.65

qovip to vivip = q\'ivip to ovip
3b Jovip = Zvivips Hovip = Hyivips Qvivip to ovip = 0 6540 0.196  0.196 1.328¢e—6 1.328¢—6 0.042 1.000e-7 -1302 0
AIC, Akaike information criterion.

b\,
@) ©1) ©1) (1241 (217[;:1 N

Davis et al. (BMC Biology, 2013)

Difference in Rates (Character State Tip Ratios)

Fiaure 1 Power of BiSSE under simulations with asvmmetrical



Evaluating Correlates of Differential
Diversification Rates

And now for some complicated models...meet the *SSE family!

BiSSE  (Binary-State Speciation Extinction): Maddison et al. (Syst Biol, 2007)

® Two states, 6 parameters

MuSSE  (Multi-State Speciation Extinction): Fitzjohn et al. (Syst Biol, 2009)

® (2N — 2) 4+ 2N parameters

QuaSSE (Quantitative-State Speciation Extinction): Fitzjohn (Syst Biol, 2010)

® lots and lots of parameters

GeoSSE (Geographic-State Speciation Extinction): Goldberg et al. (Syst Biol, 2011)

® even more parameters!

BiSSEness (BiSSE-Node Enhanced State Shift): Magnuson-Ford & Otto (Am Nat, 2012)

® two states, 10 parameters



Five Fundamental Questions in the Study of
Diversification Rates

l. Detecting significant diversification rate variation across the tree
ll. Locating significant diversification rate shifts along branches

lll. Identifying significant diversification rate shifts through time
IV. Evaluating correlates of differential diversification rates

V. Estimating parameters of the branching process



Diversification-Rate Parameter Estimation

ML Estimation from Lineage-Thru-Time Plots
(e.g., Nee , 2001, Magallon & Sanderson, 2001) 0.7

Maximum likelihood is used to estimate composite
rate parameters:
- diversification rate, 9 = (A - 1)
- relative extinction rate, € = (1L /A) =

It is not possible to estimate individual rate parameters
(e.g., Kubo & lwasa, 1995; Paradis, 2004)

Comparing absolute diversification rates across
clades of different ages is largely invalid if © >0

(e.g., Kubo & Iwasa) d/b

Reliable (valid) parameter estimation

* accommodating variance in divergence-time estimates
* no bias in divergence time estimates
* large phylogenies
- complete or phylogenetically unbiased species sampling
* demonstration that diversification has been constant
* across lineages
* through time



Summary: Some General Advice for Exploring
Diversification Rates

1. Expectations under SBP models are diffuse to a degree that defies intuition
this makes it difficult to detect departures from stochastic expectations

2. When using methods that entail SBP models for estimation it’s critical to:
carefully assess model fit/adequacy
carefully assess our ability to reliably estimate under the assumed model

3. It’s important to accommodate various sources of phylogenetic uncertainty
inferences based on point estimates are unlikely to be reliable

4. The statistical behavior of many recent methods is poorly characterized

power analyses may be useful for assessing the ability of methods to
make the desired inferences from your data

5. Make an effort to understand-and assess—the (implicit) assumptions

the assumptions are often cryptic, critical and frequently violated in real
data



