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The Players

6 = Sequence Evolution Model Parameters

é = Tree Topology and Branch Lengths

B = Sequence Alignment



Simulation View of Models
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Simulation View of Models

How frequently is some data observed when datasets are repeatedly
generated with a particular tree and set of model parameters?



The Likelihood Function
P(mun| T, 6)

Read as “the probability of the sequence data given a tree
and a set of model parameter values”.

The quantity by which the data provide information.

Compares how well different trees and models
predict the observed data.



The Likelihood Function
P(mun| T, 6)

Read as “the probability of the sequence data given a tree
and a set of model parameter values”.

The quantity by which the data provide information.

Compares how well different trees and models
predict the observed data or as a “measure of surprise”.

NOT the same as P(£ ‘ ﬁ)



Maximum Likelihood

P(mm|—, 6)

What tree and parameter values give the highest likelihood?

ML scores are just relative, so alone they doesn’t tell us how
confident we are in this solution, just that this is the
preferred solution.
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More Parameters = Better ML Score
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Maximum Likelihood

Usually implicit

/
P(=e|-,6,M)

What tree and parameter values give the highest likelihood?

ML scores are just relative, so alone they doesn’t tell us how
confident we are in this solution, just that this is the
preferred solution.



ML-based Model Selection

Bias
Variance

Number of Parameters



ML-based Model Selection Criteria

*AIC — Penalty from information theory
*BIC — Penalty designed to mimic a posterior

DT — Penalty based on performance
(e.g., branch-length estimation)

L RT — Compares to expected increase In
ML if simple model true



ML-based Model Selection Criteria

Let’s try this with jModelTest!



ML Inference

&

Usually done in Garli or RAXML
for large datasets.

Garli uses a genetic algorithm to
find the best trees.



Genetic Algorithm
Uses evolutionary principles to solve complex problems:

Selection
Mutation
Recombination
Metapopulations

Fitness is equivalent to the quality of the solution (likelihood)




Bootstrapping to Assess
Confidence

Original Site 123456738910
alignment human NENLFASFIA
chimpanzee NENLFASFAA
bonobo NENLVFASFAA
gorilla NENLFASTFTIA
orangutan NEDLFTPFTT
Sumatran NESLFTPFIT
gibbon NENLTFTSFAT
fa?;);jgap Site 2419589137
human ELNTIFFTINNS
chimpanzee ELNAFFANNS
bonobo ELNAFFANNS
gorilla ELNTIFFTINNS
orangutan ELNTVFFTNDP
Sumatran ELNIVFFINSP
gibbon ELNAFFANNS
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Bootstrapping to Assess
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Bootstrapping to Assess
Confidence

Interpretations of the bootstrap:

- Repeatability
- 1 — False Positive Rate from a polytomy

- Probability branch is true



Bootstrapping to Assess
Confidence

Interpretations of the bootstrap:

- Repeatability

- 1 — False Positive Rate from a polytomy




Bayesian Inference

% — E = Possible Trees
Observed E
Sequences —

Posterior Probability: Conditional on observed data (alignment), the
probability that a particular tree (or part of a tree) is true.

P(i= |mm )




Bayes' Theorem

Prior
Probability Likelihood Poster_ic_)r
l \l Probability
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Normalizing
Constant




Marginalizing

Joint
Posterior
Probability

|
P(c= 6] m)



Marginalizing

Joint Marginal
Posterior Posterior
Probability Probability

| |
[P0/ mm) do = P( | mm)

/

Integrating across all values of
model parameters



Marginalizing

Trees Joint

£1 éz £3 Probabilities
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Marginalizing Across Models

Trees Joint

£1 éz £3 Probabilities

\\Marginal

Probabilities



What Priors to Use?

* The controversial part of Bayesian analysis
* Choice can vary by researcher
 Often chosen in an attempt to reflect prior ignorance

* Analysis can be run under several priors to assess
sensitivity



Uniform Topology Prior
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Beta Distribution

A Beta (0.5,0.5)

0 1




Prior on Sets - Dirichlet Distribution




Branch-Length Priors

A ErrrrIrr,r,r,rr,r,r,r,rr,r,rr,rrr,r,,r,rr,r,,rrr,r,r,r,rrsssrrrE

Gco 40 SL0 10 00 0

Strongly Informative Prior on Change

T haar

R R _ "R

NN
AN

N N

NN
AMMNMIMIMNINNSY

TSI =
R
AN
AHTITITINNY

Uniform(0,4) Branch-Length Prior

0l 80 90 14\ ¢0 00

0.8

0.6

P(Different Base at End of Branch)

0.4

0.2

0.0

10

Branch-Length

Idea from P.O. Lewis



Branch-Length Priors

Default Exponential Branch-Length Prior (A=10, mean=0.1)
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Implied Tree-Length Prior
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Prior Probability Density
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Compound Branch-Length Prior

Dirichlet prior on partitioning of
/ branch lengths into total tree length

/

Total Tree Length Prior: (Inv) Gamma

Rannala et al. 2011. Mol. Biol. Evol.
Zhang et al. 2012. Syst. Biol



Estimated Tree Lengths

Dataset

ML TL Estimate

Bayes TL Interval (MB Default)

Bayes TL Interval (Informed)

Bayes TL Interval (Compound Prior)

Clams

1.96

10.7 -17.7

1.15-1.43

09-13

Frogs

0.55

1.77-3.29

0.32-0.38

0.44 - 0.57



Bayes' Theorem

P(—,0) - P(mm|—,0) _

@ = P((—,6| m=)

\

No Analytical
Solution



Posterior Odds Ratio

P(—, 6] mm)
P(=, 0] =m)



Posterior Odds Ratio

P((=,0) - P(mm|—_0)

o _P(, 6 =)
P(—,6) - P(wn|,6) P( 6 =s)

P



Posterior Odds Ratio

P(,0) - P(==|",8) P(<",6 =n)
P(—,6) - P(wn|.,6) P( 6 =m)
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Posterior Probability Density

1.

Markov chain Monte Carlo

Start at an arbitrary point

Y

Tree 1 Tree 2 Tree 3

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist



Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move
1
Tree 1 Tree 2 Tree 3

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move

Proposal Distribution
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move

Proposal Distribution
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Parameter Space (sort of)
This slide “borrowed” from F. Ronquist
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move
3. Calculate posterior density ratio (r) of new state to old state:

a) r>1->new state accepted

b) r<1->new state accepted with probability r. If new state not
accepted, stay in the old state

always accept
2a &

1

Y

Tree 1 Tree 2 Tree 3
Parameter Space (sort of)
This slide “borrowed” from F. Ronquist
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move
3. Calculate posterior density ratio (r) of new state to old state:

a) r>1->new state accepted

b) r<1->new state accepted with probability r. If new state not
accepted, stay in the old state

always accept
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move
3. Calculate posterior density ratio (r) of new state to old state:

a) r>1->new state accepted

b) r<1->new state accepted with probability r. If new state not
accepted, stay in the old state

4. Go to step 2 a BUNCH (x 10,000’ s — x 10,000,000’ s)

always accept
2a &

" .
op @ accept sometimes

Y

Tree 1 Tree 2 Tree 3
Parameter Space (sort of)
This slide “borrowed” from F. Ronquist
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Posterior Probability Density

Markov chain Monte Carlo

1. Start at an arbitrary point
2. Make a small random move
3. Calculate posterior density ratio (r) of new state to old state:

a) r>1->new state accepted

b) r<1->new state accepted with probability r. If new state not
accepted, stay in the old state

4. Go to step 2 a BUNCH (x 10,000’ s — x 10,000,000’ s)

always accept
2a &

1 \ The proportion of time the
accept sometimes  MCMC procedure samples

2b from a particular parameter
region is an estimate of that
region’ s posterior probability
density
20 % 48 % 32 %
Tree 1 Tree 2 Tree 3

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist



Posterior Probability Density

>

Metropolis Coupling

accept very rarely

2
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Tree 2 Tree 3

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist



Posterior Probability Density

Metropolis Coupling

Same rules as regular MCMC, but now there are multiple chains
with different ‘temperatures’ .

‘Heated’ chains sample a ‘melted’ version of the posterior

Only difference is that heated chains raise the ratio of posterior
densities to (1-temp) when deciding whether to accept a move.

(1-temp)
r approaches 1 (flat surface) as temp. increases
1
accept very rarely
Heated Posterior Surface
2
Tree 1 Tree 2 Tree 3 ]

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist



Posterior Probability Density

Metropolis Coupling

Same rules as regular MCMC, but now there are multiple chains
with different ‘temperatures’ .

‘Heated’ chains sample a ‘melted’ version of the posterior

Only difference is that heated chains raise the ratio of posterior
densities to (1-temp) when deciding whether to accept a move.

(1-temp)
r approaches 1 (flat surface) as temp. increases
accept more often
1 \ —Heated Posterior Surface
2
Tree 1 Tree 2 Tree 3

Parameter Space (sort of)
This slide “borrowed” from F. Ronquist
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Posterior Probability Density

Metropolis Coupling

Same rules as regular MCMC, but now there are multiple chains
with different ‘temperatures’ .

‘Heated’ chains sample a ‘melted’ version of the posterior

Only difference is that heated chains raise the ratio of posterior
densities to (1-temp) when deciding whether to accept a move.

(1-temp)
r approaches 1 (flat surface) as temp. increases

Samples only recorded from the ‘cold’ chain

Heated chains are ‘scout’ s. Occasionally propose to trade places
with the cold chain.

accept more often
1 \ —Heated Posterior Surface

2

Tree 1 Tree 2 Tree 3
Parameter Space (sort of)
This slide “borrowed” from F. Ronquist



Toy MCMC Demonstration

* MCRobot — PC (Lewis)

— http://www.eeb.uconn.edu/people/plewis/software.php

* iIMCMC — Mac (Huelsenbeck)
— http://fisher.berkeley.edu/cteg/software.html

000

800 Controller

( ooooooooooo ) (CIearSamples) ( Stop Chain ) ( Run Chain )




Convergence of Scalars - Tracer W

Tracer
Trace Files: I Esti _A Marginal Density |/ Joint-Marginal = i) Trace |
Tree File States Burn-in =57,
primates_HKYG.runl.p 100000 1000
primates_HKYG.run2.p 100000 1000
primates_HKYG.run3.p 100000 1000
primates_HKYG.run4.p 100000 1000 |
Combined 396400 = | ‘
-5720 | ‘
I
‘ ‘
5725 |
Traces:
-5730 ‘
Statistic Mean £S5
LnL -5725.48 487.117
T 3.03 344.642 |
kappa 11.542 342.441 -
pi(A) 0.363 424.714 ] |
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pi(G) 8.23E-2 422.1
piM 0.236 407.606
alpha 0.385 473.782 s
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5745
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in O . | T — A e E——e
Axes...| ¥ ShowBurn-in [_)Sampleonly - ¥ Drawlineplot - Legend: | None % Colour by: | All
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#NEXUS
begin data;

dimensions ntax=12 nchar=5;
format datatype=dna interleave=no gap=- missing=?;

matrix
Tarsius_syrichta
Lemur_catta
Homo_sapiens

Pan

Gorilla

Pongo

Hylobates
Macaca_fuscata
M_mulatta
M_fascicularis
M_sylvanus
Saimiri_sciureus

b

end;

Running on Empty

Tracer

[ Il Estimates A Marginal Density [/ Joint-Marginal = A Trace
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Topological Convergence - TreeSetViz

ee Set Visualization 2.1
D /Graphicsy Text '/ Parameters'/Modules'/ Citations' O @

(4] ( Start MDS ) _! Sampled MDS Step Size: (.
[a} Stress. —
S Warrrrs 0.3160523% Sample Size 3.708E-4 —
( Scramble ) =
o ] .
s o M ( Tree Order ) rate: 30 | items/sec
% .
(', . .

Starting tree

15.333z

11.5

7.6666E

”.

- R

-39919.4 -22756.0

Likelihood Scores

TreeSetViz: http://comet.lehman.cuny.edu/treeviz/
Mesquite: http://www.mesquiteproject.org/mesquite/mesquite.html
Hillis et al., Analysis and Visualization of Tree Space, Syst. Biol., 54(3): 471-482.




Topological Convergence - TreeScaper

Colors = Trees from Different Genes

Salamanders Mammals

http://bpd.sc.fsu.edu/index.php/diagnostic-software/104-treescaper



Bayesian Phylogenetic Software

MrBayes
PhyloBayes
BayesPhylogenies
BEAST

BEST

BUCKy

BAMBE

Bali-Phy




* MrBayes

Bayesian Phylogenetic Software

PhyloBayes
BayesPhylogenies
BEAST

BEST

BUCKy

BAMBE

Bali-Phy
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MrBayes - Installation

Available at: http://mrbayes.sourceforge.net/
— Executable versions for PC and Mac
— Source code for compilation (command-line)
— Serial, Parallel, and GPU-enabled (via Beagle)

— Nice manual (in progress), tutorials, command
reference

— Current version: 3.2.1
* Complete re-write (RevBayes) on its way



MrBayes — Fire It Up

ouble click on icon or use command line in
n iX MrBayes v3.1.2

MrBayes v3.1.2

{Bayesian Analysis of Phulogeny}

> ./Mm .
° Fredrik Ronquist and John P. Huelsenbeck

School of Computational Science
Florida State University
ronquistlesit.fsu.edu

Section of Ecology, Behavior and Evolution
— Division of Biological Sciences
- O r University of California, San Diego
johnhBbiomai l .ucsd.edu

Distributed under the GNU General Public License

Type "help" or "help <{command>" for information
on the commands that are available.

> mb




MrBayes — Help

help
— Use this command anytime you need more info
— No options will spit out a list of commands

— Help command gives more detail on that particular
command.

The most important command you will learn today!



LJ|

MrBayes - First Command

execute
— Used to load in files
— Can apply to files with data, commands, or both

— Any files must be nexus formatted

— Style: | often separate data and commands into
separate files to facilitate multiple analyses

- Tip: Check line breaks of input files

Try the execute command with primates.nex...
MrBayes > execute primates.nex



MrBayes — Data

include and exclude

- Can decide which sites to use in an analysis
after the data are loaded

Try excluding sites 90-99....
Check their status using “charstat’...
Try re-including them...

Check status again...
Can exclude gaps and missing data as “missambig”...



MrBayes — Models

[set

- Defines the form of the model and # of parameters
- nst (1,2,6) - # of substitution types
- rates (equal, G, I, G+l, or autocorrelated)

- other options available for doublet/codon models

Try setting a GTR (nst=6) + G (rates=gamma) model...



showmodel

MrBayes — Reviewing

- Use this command to review the model and

prior settings th

MrBayes > showmodel
Model settings:
Datatype

Nucmode |
Nst

Covarion
# States

Rates

Active parameters:

Parameters
Revmat
Statefreq
Shape
Topology
Brlens

Parameter
Prior
Parameter
Prior
Parameter
Prior
Parameter
Prior
Parameter
Prior

at you specified.

DNA

4by4

6

Substitution rates, expressed as proportions
of the rate sum, have a Dirichlet prior
{1.00,1.00,1.00,1.00,1.00,1.00)

No

4

State frequencies have a Dirichlet prior
{1.08,1.00,1.08,1.00)

Gamma

Gamma shape parameter is uniformly dist-
ributed on the interval {(9.00,200.00).

Gamma distribution is approximated using 4 categories.

Revmat

Dirichlet{1.68,1.08,1.00,1.08,1.00,1.08)

Statefreq

Dirichlet

Shape

Uni form{@.08,260 .08 )

Topology

All topologies equally probable a priori

Brlens

Branch lengths are Unconstrained:Exponential{18.9)

LU (I L [ L I L [}



MrBayes — Priors

prset
- Sets prior probabilities for all parameters

(e.g., partition scaling, base frequencies,
branch lengths, ...)

- By default, models include variable base
frequencies

Try fixing base frequencies to be equal - statefreqpr=fixed(equal) ...
Try fixing base frequencies at some arbitrary values...



Dirichlet Distribution

e Used to specify prior for a set of frequencies that
have a fixed sum (e.g., relative rates, base freqs)
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a=(1.14, 1.14, 1.14)



MrBayes — Priors

prset
- Sets prior probabilities for all parameters

(e.g., relative rates, base frequencies,
relative rates, branch lengths, ...)

- By default, models include variable base
frequencies

Try specifying a more informative prior (not fixed)...




MrBayes — Priors

prset

- Branch length priors can be important!
=>» Define a prior for every branch (lots of params)
=» Can strongly affect posterior probabilities

=» Can strongly affect posterior branch lengths

— Usually an exponential prior for branch lengths. Value specified
in prset is the rate of the exponential (1/mean).

Try specifying a prior with a smaller mean (bigger rate) branch length...
Try specifying a prior with a larger mean (smaller rate) branch length...



MrBayes — MCMC

mcmcp and memc

- mcmcp sets parameters of analysis without
starting the analysis

- mcmc sets parameters and starts analysis
- Some important options:
(i) ngen = # of “generations” before pausing
(ii) nruns = # of independent runs (important!)
(iii) nchains and temp -> metropolis-coupling (next)

(iv) samplefreq and printfreq -> frequency of printing
to file and to screen



MrBayes — Let ‘er rip

Try setting:
ngen = 10000
samplefreq = 200
printfreq = 200
nruns =4
filename=primatesl

..type “memc” to start and watch the magic!
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MrBayes — Output Files

Parameter (.p) files

— Contains likelihoods and parameter estimates for each
generation

— Can plot “traces” of these values through time
Tree (.t) files
— Contains tree (with branch lengths) for each generation

— Use collection of trees to calculate consensus tree (or
other topological summary statistics)

Take a look in TextWrangler (or equivalent)...
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MrBayes — Summarizing

sump
— Calculates summary statistics for scalar values

sumt

— Calculates summary information for trees (including a
majority-rule consensus tree and the MPP tree)

Tracer

- http://tree.bio.ed.ac.uk/software/tracer/
AWTY

- http://ceb.csit.fsu.edu/awty/




L

MrBayes — Summarizing

burnin
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MrBayes — Summarizing

burnin

-10950
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MrBayes — Convergence

Average Standard Deviation of Split Frequencies
— Calculated from independent estimates across runs

ESS (rough)

— ~ equivalent number of independent samples
PSRF (rough)

— Compares between and within run variances

Compare trees across runs (post hoc)

— Simply compare topological estimates across runs



MrBayes — MC3

Metropolis-Coupling — mcmcp (mcmc)
— nchains — total number of chains

— temp — degree of incremental heating
(e.g., if temp = 0.2, heating is O (cold chain), 0.2, 0.4, 0.6, ...)

Try increasing the number of chains from 4 to 8...
Run analyses for 10K generations and compare run times...
How does screen output change?
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&) MrBayes — Partitioning




MrBayes — Partitioning

Defining character sets

- Charset name = characters

- \3 denotes every 3" position (for codon structure)
Defining (and setting!) a partitioning scheme

- partition cod.pos = 3: cod.pos.1, cod.pos.2, cod.pos.3;
- set partition = cod.pos;

Linking/Unlinking parameters across partitions

- Iset applyto=(all) nst=6 rates=gamma;

- unlink revmat=(all) statefreq=(all) shape=(all);

Variable Rates (scales branch lengths)
- prset ratepr=variable;
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MrBayes — Partitioning

* Try:
— Defining character sets by thirds of the data
— Defining character sets by codon position
— Unlinking ONLY base frequencies across partitions
— Allowing variable rates of evolution across partitions
— Assigning HKY (nst=2) to two partitions and GTR (nst=6) to one partition...
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MrBayes — Command File

HNEXUS

Begin MrBayes;
execute primates.nex,;
Iset nst=6 rates=gamma;
prset brlenspr=Uconstrained:Exp(1);
mcmc ngen=10000;
sump;
sumt;
End:;
Try creating a command file and executing it...
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MrBayes — Command Line

* |If compiled locally, you can run MrBayes from the
command line (e.g., Terminal for Mac OS X)

> mb mb_cmds.nex

 Facilitates batch analyses, especially on a
computing cluster



MrBayes with Beagle

If you have an NVIDIA graphics card, you can take
advantage of GPU-based parallelization via the
Beagle library. Especially helpful for codon and
amino acid models.

How To:

- Check your graphics card (on Mac: “About This Mac”)

- Download and install CUDA drivers from NVIDIA
(http://www.nvidia.com/Download/index.aspx?lang=en-us)

- Check that MrBayes sees it (showbeagle)

- Turn it on (set beagledevice=gpu usebeagle=yes)




MrBayes — Proposals

* Proposal Distributions and Frequency
- Vary by type of parameter

- In theory, don’ t affect estimated values, only the time
it takes to get the estimates

- In practice, can effectively kill the ability of the MCMC
to find the “right” part of parameter space before
your career ends

- Set using the “props” command
- Currently this can only be done interactively



MrBayes — Proposals

Dirichlet proposal

New values are picked from a Dirichlet (or Beta) distribution
centered on x.

Tuning parameter: o
Bolder proposals: decrease o
More modest proposals: increase o

Works well for proportions, such as revmat and statefregs.

L




MrBayes — Proposals

Sliding Window Proposal

New values are picked uniformly from a sliding window
of size 6 centered on x.

Tuning parameter: o

Bolder proposals: increase 6

More modest proposals: decrease

Works best when the effect on the probability of the
data is similar throughout the parameter range

LJ‘




MrBayes — Proposals

Multiplier Proposal

x/a x ax

New values are picked from the equivalent of a
sliding window on the log-transformed x axis.

Tuning parameter: A =2 In a

Bolder proposals: increase A

More modest proposals: decrease A

Works well when changes in small values of x have
a larger effect on the probability of data than
changes in large values of x. Example: branch lengths.

LJ‘




LOCAL

A

\oTo < /
.

B

Three internal branches - a, b, and ¢ - are chosen at random.

Therr total length 1s changed using a multiplier with tuning
paremeter A.

One of the subtrees A or B is picked at random.

It 1s randomly reinserted on a + b + ¢ according to a uni-
form distribution

Bolder proposals: increase A
More modest proposals: decrease A
Changing A has little effect on the boldness of the proposal

MrBayes — Proposals

Extending TBR

An internal branch a 1s chosen at random

The length of a 1s changed using a multiplier with tuning
paremeter A

The node x 1s moved, with one of the adjacent branches, in subtree A,
one node at a time, each time the probability of moving one more
branch is p (the extension probability).

The node y 1s moved similarly 1n subtree B.

Bolder proposals: increase p
More modest proposals: decrease p
Changing A has little effect on the boldness of the proposal.



MrBayes — Proposals

Try this:

(1) Pick your favorite variable

(2) Turn off (almost) its proposals (set proposal rate close to 0)

(3) Start new (short) MCMC

(4) Either in Tracer or by looking directly at the parameter and likelihood

values in the .p file, compare the rate of change for the parameter value
and likelihood, especially early in the analysis.



Bayesian Model
Selection and Adequacy



Don’t Choose!

Let the analysis sample different models for you (called reversible jump — RJ)
To sample sub-models of GTR:

MrBayes > Iset nst=mixed

Posterior Standard Min. Max.
Model Probability Deviation Probability Probability
gtrsubmodel [121123] 0.195 0.033 0.172 0.219
gtrsubmodel [121324] 0.089 0.005 0.086 0.093
gtrsubmodel [121323] 0.079 0.009 0.073 0.086
gtrsubmodel [121321] 0.060 0.037 0.033 0.086
gtrsubmodel [123324] 0.060 0.000 0.060 0.060
gtrsubmodel [121121] 0.053 0.009 0.046 0.060



L

Posterior Odds Ratio

Prior Bayes Posterior
Odds Factor Odds

P({C,0) - P(ms|c—,8) P(, 6 =x)
P(:,6) - P(mm|,6) P( 6] &8)
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Posterior Odds Ratio

Prior Bayes Posterior
Odds Factor Odds

P(C,0M) - P(me|—,0M) P 0M xE

P(,6.M)- P(mal0.M) P(,6M =k




Marginal Likelihood of a Model

sequence length
true branch length
true kappa

= 1000 sites
=0.15
=4.0
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Bayesian Phylogenetics

K80 model (entire 2d space)

JC69 model (just this 1d line)

branch length
K80 wins
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K80 model (entire 2d space)

JC69 model (just this 1d line)

Marginal Likelihood of a Model

1000 sites
0.15

sequence length

true branch length

true kappa
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Estimating Bayes Factors

If using RJ (sampling the posterior distribution
of models), you can calculate the Bayes factor
as the ratio of posterior and prior odds

Can also calculate the marginal likelihoods from
separate analyses employing different models

- Harmonic mean (easy, but biased)

- Stepping stone (more accurate, but harder)

- Thermodynamic integration (similar to SS —
not implemented in MrBayes)

- MORE SOON!




Probability Density

MrBayes — Stepping Stone

We have draws from

Posterior the posterior, but we
(~likelihood) are integrating across

\ the prior.
Solution: Importance
Sampling - HM
Which values matter
for a harmonic mean?
Prior\

________ _4_L_________-

Parameter Value

L
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b MrBayes — Stepping Stone

Posterior
=1

Prior
3 =0

_ f IR S )
palv.ly) = ZHE

10

0

0.3
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MrBayes — Stepping Stone

SS and ssp

ssp allows you to set the parameters of the
stepping stone process without running. ss
does the same, but starts the run.

Try the ss command with primates.nex...
MrBayes > ss



Topology BFs

Can also use stepping stone to calculate marginal likelihoods for sets of
trees subject to particular constraints.

For instance, comparing the marginal likelihoods for a set of trees that
all contain a branch to the set of trees that all do NOT contain that
branch would give you a Bayes factor supporting that branch.

C
<
A
/ E \
B
Marginal likelinood with Marginal likelihood withOUT
AB | CDE AB | CDE

™~ e

Bayes Factor



Model Choice v “Adequacy”

Which of the available models will perform best?
VS.

Is any given model sufficient to provide unbiased
inferences?



Model Choice v “Adequacy”
Or, better, Plausibility

Which of the available models will perform best?
VS.

Is any given model sufficient to provide unbiased
inferences?



Posterior Prediction

Could #EE have come from P(=,0| ®=m) ?

Could the model and priors plausibly
have given rise to the data?

If not, phylogenies may be biased



Big Data = Strong Support

1,955 Genes

Bayesian Tree

— 1.0 \
1.0
0.04 y

From Bob Thomson (Painted Turtle Genome Project)




Diff 't Genes - Diff’t Trees

Crocodilian

Archosaur

Aves

Many genes, few taxa

|,144 Genes
4-8 Taxa Per Gene

Sauropsid

Lepidosaur

Other

Alignments from Bob Thomson (Painted Turtle Genome Project)



Diff't Genes - Diff’t Trees

All groups (31 genes)

Few genes, many taxa

129 Taxa
31 genes

Archosaur

Basal Reptile Lepidosaur

Fong, Brown, Fujita, and Boussau. 2012. PLoS One. 7:e48990.



Diff 't Genes - Diff’t Trees

All groups (31 genes)

Other Basal Reptile Lepidosaur

Biological or Methodological Variation?



Posterior Prediction

“We do not like to ask, ‘Is our model true or false?’, since probability models in
most analyses will not be perfectly true...The more relevant question is, ‘Do the
model’ s deficiencies have a noticeable effect on the substantive inferences?’ ”

-A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin
Bayesian Data Analysis



Posterior Prediction %




Posterior Prediction

Good
Model

{ T(TEE)

l—l—\
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Posterior Predictive Simulation LL‘EL

Previously proposed statistic™:
Multinomial Likelihood

ligs

Based on the frequency of different site patterns

*Goldman, 1993:; Bollback, 2002



Posterior Predictive Simulation

Previously proposed statistic™:
Multinomial Likelihood

B E

Based on the frequency of different site patterns

Tests if the assumed and generating models
produce data with similar site pattern frequencies

Intuitively appealing, but very sensitive to branch-length biases.
Can reject adequacy, even when inferred phylogeny is correct

*Goldman, 1993:; Bollback, 2002



Posterior Predictive Simulation LL‘EL

Previously proposed statistics:

- Multinomial Likelihood

-  Number of Unique Site Patterns

- Frequency of Invariant Sites

- Heterogeneity of Base Frequencies

-  Number of parsimony-inferred
‘parallel” sites



Posterior Prediction g%
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Marginal Test Quantities LﬂEL

P(=|mm)
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Marginal Test Quantities - TopologyLﬂEL

— E
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é1 { rlE ﬁ3
c, i,
1/13 10/13 2/13

Integrating across variation in branch lengths (nuisance parameter)



Entropy Quantifies Support Across Topologies

Higher Entropy Lower Entropy

1 1

0.5-

Posterior Probability
Posterior Probability
o
@)

()

A,




Marginal Test Quantities — Tree Length

\Mﬁﬁcﬁ{ﬁ{ﬁ{ﬁ{- T {4—'_—':4—'_—':’
Mean Tree L'ength =3.15

Integrating across topologies (nuisance parameter)




Posterior Prediction

What kinds of inferences might we care about?

- Overall topological inference
- Branch-specific support (posteriors)
- Tree (or branch) length

- Support from individual sequence positions
(Identify specific biased sites)



1. Perform Bayesian data analysis
(e.g., MrBayes)

2. Simulate posterior predictive data
(e.g., PUMA or MAPPS)

3. Analyze posterior predictive data sets
(e.g., MrBayes)

4. Calculate marginal posterior predictive P-values jem
AMP (http://code.google.com/p/phylo-amp)




Bottom-Up Phylogenomics
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Bottom-Up Phylogenomics




Bottom-Up Phylogenomics
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Bottom-Up Phylogenomics
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Simulation Test

é F
1x  10x 50x
Comry Simplel

P( {-E |..aﬂ.m.||)complex P( {—E |.aﬂ.m.||)3imple



Simple Model Biased with Longer Trees

100%

Simple
Better

® 1x
® 10x
@ 50x

60% 70% 80% 90%
Il 1 1 1

True Tree Support (Simple)

50%
1

50% 60% 70% 80% 90% 100%

True Tree Support (Complex)
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Complex

%2 Testing Performance with Simulated Data

1x  10x 50x _
50 Each Complex Simple

P(

prmsmast)

Complex

“Correct” Posteriors

P(.

Model Adequacy P-value
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< Testing Performance with Simulated Data

1x  10x 50x _
50 Each Complex Simple

P(

)

Complex

“Correct” Posteriors

P(.

Model Adequacy P-value



Simulation Test

Tree-length Error (True - Incorrect)

-4(13% -29% O‘I’/o 20|% 40|%
M Reliable
A
o _
O © O Topology $0/50
(—30 g_ <& Tree Length 4/64 9 0/150
: o o ¢
c o 15/32
S o ‘ O 18/25
o
6/6  44/44 O 812 7/7 111 212
ol € T TTéTT T T T T T T A TTETTe T
Unreliable 48/50
| | | | |
-20% -10% 0% 10% 20%

Topological Error (True - Incorrect)



Treelength Test Quantity
Detects Biased Branch-Length Inference

» 50 replicate datasets
* Bipartition posteriors nearly identical to true branch-length prior
 Tree Lengths overestimated




Number of Datasets

o
To)

25

Treelength Test Quantity
Detects Biased Branch-Length Inference

» 50 replicate datasets
* Bipartition posteriors nearly identical to true branch-length prior
 Tree Lengths overestimated

)

Tree Length Adequacy
Always Rejected

I I I I
0.05 0.2 0.4 0.6 0.8

Posterior Predictive P-value
(Mean Tree Length)

1.0

o
To)

25

Topological Adequacy
Very Rarely Rejected

% Z
. D e P %

[ I I I I
0.05 0.2 0.4 0.6 0.8 1.0

Posterior Predictive P-value
(Statistical Entropy)




Posterior Prediction

L L 1% 7
¥ A A

Speciés A

Posterior Predictive p-values

Species E
0 1 d

Species B
0.89

Species C

Species D

Species F
Topology 1 .
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The End



