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From the MrBayes webpage (http://mrbayes.sourceforge.net): 
 

MrBayes is a program for the Bayesian estimation of phylogeny. Bayesian 
inference of phylogeny is based upon a quantity called the posterior probability 
distribution of trees, which is the probability of a tree conditioned on the 
observations. The conditioning is accomplished using Bayes’s theorem. The 
posterior probability distribution of trees is impossible to calculate analytically; 
instead, MrBayes uses a simulation technique called Markov chain Monte Carlo 
(or MCMC) to approximate the posterior probabilities of trees. 
 
This tutorial will occasionally assume a Unix-based operating system, but should 
generally work for PCs.  Lines preceded by $ represent Unix commands. 
 
Installation 
 
MrBayes can be downloaded from the MrBayes website 
(http://mrbayes.sourceforge.net). Pre-compiled, executable versions of MrBayes 
for PCs or Macs are available for direct download. Both serial and parallel versions 
are available. Parallel versions allow a single analysis to take advantage of multiple 
processors, if they are available. 
 
The source code can also be downloaded and compiled locally for use on Unix 
systems or for command-line use on other systems. Command-line versions will 
facilitate batch and cluster-based analyses. Instructions for compilation are given 
on the website. 
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Starting MrBayes 
If you have downloaded a pre-compiled executable version of MrBayes, simply 
double-click on the icon to start MrBayes. If you have compiled the source code 
locally, you can execute MrBayes from the command line (e.g.,  
$ ./mb 

in Unix), once you have set your working directory properly.  To be able to start 
MrBayes from anywhere without having to recall where it’s installed each time, 
you can either modify your PATH variable (see here: 
http://kb.iu.edu/data/acar.html) to include your MrBayes directory or you can move 
the MrBayes executable to a directory that’s already in your PATH (e.g., 
/usr/local/bin/).  The latter can be accomplished (if you have administrator 
privileges), by typing: 

$ sudo mv ./mb /usr/local/bin/ 

if you are in the directory where MrBayes is installed. 

Once MrBayes has started, it should print out an intro splash screen and then wait 
for your commands at the command prompt: 

MrBayes > 

 
Getting Help 
 
The single most important MrBayes command is help. Simply typing help at 
the MrBayes command prompt, 
 
MrBayes > help 
	  
will provide a list of the possible MrBayes commands and a brief 
description of their purpose. If you would like more information on a 
particular command, including a list of its associated parameters and their 
current settings, use help <command_name> where <command_name> 
should be replaced by the name of the command in which you are 
interested. For example, to get help on the execute command, type: 
 
MrBayes > help execute 
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Loading and Manipulating Data 
 
The first command that you will need to use in MrBayes is execute. This 
command loads information (either a data matrix, a set of trees, or a set of 
MrBayes commands) from a file. The file (e.g., chr1_1057.nex) should be in 
the folder where you were when you started MrBayes. Type: 
 
MrBayes > execute chr1_1057.nex 
	  
The execute command can be used identically with a file containing 
MrBayes commands. If this file contains all the commands needed for an 
analysis, one could simply open MrBayes and execute this command file at 
the command prompt. You could also run MrBayes with a command file by 
specifying the file name (e.g., mb_cmds.nex) on the command line when 
executing MrBayes. For instance, in Unix: 
 
$ mb mb_cmds.nex 
 
Once data has been loaded into MrBayes, sites can be excluded from an 
analysis using the exclude command. Sites are designated for exclusion 
based on the number corresponding to their column in an alignment. For 
instance, to exclude sites 90-99, type: 
 
MrBayes > exclude 90-99 
	  
If sites need to be re-included, use the include command: 
 
MrBayes > include 90-99 
	  
Often, one might want to include/exclude every n-th character. For 
instance, defining a character set that starts with the first character and 
includes every 3rd character would circumscribe all 1st codon positions. 
This type of inclusion/exclusion is accomplished by using the notation \3 at 
the end of the character list. For example, to exclude all 1st codon 
positions, type: 
 
MrBayes > exclude 1-. \3 
	  
The "." symbol is used to mean the last position in our data set. To 
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exclude all 2nd codon positions, use a very similar command, but start the 
character list with the 2nd site: 
 
MrBayes > exclude 2-. \3 
	  
The inclusion/exclusion status of all sites in our dataset can be viewed 
using the charstat command. 
 
Specifying a Model of Sequence Evolution 
 
Basic Model Manipulations 
 
Most model specification is done using the lset command. The most 
common model specifications performed in lset involve the number of 
substitution types and the model of rate variation across sites. For instance, 
the number of unique substitution rates can be specified using 
the nst parameter. Possible values for nst are 1 (as in the Jukes-Cantor 
model), 2 (as in the HKY model), and 6 (as in the GTR model). Possible 
models of rate variation specified with the rates parameter include a 
proportion of invariable sites (I), gamma-distributed rates across sites (G), 
or a combination of the two (I+G). For example, you could specify a 
GTR+G model by typing: 
 
MrBayes > lset nst=6 rates=gamma 
	  
In the newest version of MrBayes (3.2.2), one can also avoid having to 
specify only one scheme of substitution types by allowing MrBayes to move 
across different schemes as part of its MCMC sampling. This procedure is 
known as reversible jump MCMC (RJ-MCMC). To set up reversible 
jumping, use the following command: 
 
MrBayes > lset nst=mixed rates=gamma 
	  
Reversible jumping is not currently set up for different models of rate 
variation across sites, so you will still need to specify +I, +G, or +I+G. 
While I will not provide detailed instructions here on analyses with doublet 
and codon models in MrBayes, these models can also be specified using 
the lset command. See the MrBayes manual for more information. 
By default, MrBayes allows the stationary frequencies of the four 
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nucleotides to be estimated from the data. To fix these frequencies at 
particular values (often 0.25 for all four nucleotides), use the 
prset command. MrBayes considers the fixation of base frequencies to be a 
prior setting, rather than a setting of the likelihood model (these distinctions 
are somewhat arbitrary). For instance, to fix all frequencies to be equal, 
type: 
 
MrBayes > prset statefreqpr=fixed(equal) 

 
Partitioning 
 
It is now widely recognized that the evolutionary process has not been 
homogeneous across sites. One approach to accommodating 
heterogeneity in the evolutionary process across sites is to divide sites into 
distinct subsets (a process called partitioning) and model the evolution of 
each subset using an independent Markov model of nucleotide substitution. 
The first step in performing a partitioned analysis is to define the distinct 
subsets of your data. These definitions are made using the 
charset command. The syntax for specifying sites with charset is the same 
as with the include and exclude commands. For instance, to specify a 
subset corresponding to the first codon position, type: 
 
MrBayes > charset cod.pos.1 = 1-. \3 
	  
Subsets corresponding to codon positions 2 and 3 could be similarly 
specified as: 
 
MrBayes > charset cod.pos.2 = 2-. \3 
MrBayes > charset cod.pos.3 = 3-. \3 
	  
Note that each site must be assigned to one and only one subset to 
perform a partitioned analysis. 
 
Once all of the appropriate character sets have been defined, they need to 
be explicitly combined into a partition. Appropriately, this is done with a 
command called partition. For instance, to specify a partitioning scheme 
with 3 subsets corresponding to the three codon positions, type 
 
MrBayes > partition cod.pos = 3:cod.pos.1,cod.pos.2,cod.pos.3 
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The number immediately preceding the ":" gives the number of subsets in 
the partioning scheme. After defining a partitioning scheme, you need to tell 
MrBayes that you actually want to use that scheme. This is done with the 
set command. So, to use the "cod.pos" partitioning scheme, type 
 
MrBayes > set partition=cod.pos 
 
Now that the partitioning scheme is all set, you need to define models of 
evolution for each subset. As above, this is done with the lset command. 
The one additional consideration is that you need to tell MrBayes to which 
subsets you want any particular lset call to apply. To apply 
one lset command to all subsets within a partitioning scheme, type 
 
MrBayes > lset applyto=(all) nst=6 rates=gamma 
	  
If you want to apply different lset calls to different partitions, use the 
numbers corresponding to the subset (defined by the order in which the 
subsets are listed in the partition definition). So, to apply an HKY model to 
codon positions 1 & 2 and a GTR+G model to codon position 3, type 
 
MrBayes > lset applyto=(1,2) nst=2 
MrBayes > lset applyto=(3) nst=6 rates=gamma 
	  
After defining the appropriate models, you need to explicitly tell MrBayes 
that parameters (some or all) need to be estimated independently (or 
"unlinked") for each partition. The "unlinking" of parameters across 
parititions is accomplished with the unlink command 
 
MrBayes > unlink revmat=(all) tratio=(all) statefreq=(all) shape=(all) 
	  
Each parameter (or related set of parameters) needs to be unlinked 
individually. "revmat" corresponds to the relative rates of substitution, 
"tratio" corresponds to the transition/transversion rate ratio, 
"statefreq" corresponds to the stationary nucleotide frequencies, and 
"shape" corresponds to the alpha shape parameter of the gamma 
distribution that models rate variation across sites. You may also need to 
unlink the proportion of invariable sites across partitions if they're included 
in your models. To check that you've unlinked parameters appropriately 
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across partitions, use the showmodel command. 
 
It is also possible to allow the overall tree length to be estimated 
independently for each subset, through the use of independent “scaling”	  
parameters. By default, these scaling parameters are linked across 
partitions. Unlike the unlinking of other parameters, the scaling parameters 
are unlinked using prset by typing 
 
MrBayes > prset ratepr=variable 
	  
Note that the use of rate multipliers across partitions still assumes that the 
relative branch lengths in the tree are identical across partitions. If, instead, 
one wants to model different relative branch lengths across 
partitions, every branch length can be estimated independently across 
partitions. The unlinking of every branch length across partitions is done 
with unlink 
 
MrBayes > unlink brlens=(all) 
	  
Unlink commands can be reversed using the link command, with identical 
syntax. 
 
Specifying Priors on Model Parameters 
Priors for nearly all parameters (i.e., relative rates of substitution, base 
frequencies, branch lengths, etc) can be set using the prset command. The 
available prior distributions vary by parameter type. Lots of information on 
possible distributions can be gained from help prset. As one example, a 
more informative prior around equal base frequencies (but not fixed at 
equal frequencies) can be set by increasing the values of the Dirichlet 
parameters 
MrBayes > prset applyto=(all) statefreqpr=Dirichlet(100,100,100,100) 

One particularly important prior to consider is the branch-length prior. This 
prior is important because this single distribution is applied to all the branch 
lengths in the tree, which can be a very large number of independent 
parameters. This is a particularly good prior to try testing for prior 
sensitivity, as the default prior setting in MrBayes has been shown to cause 
severe problems with branch-length estimation (Marshall 2010, Brown et al. 
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2010). In other words, run multiple analyses with different branch-length 
priors and look for changes in the resulting posteriors. Also note that the 
parameter specified for the exponential prior on branch lengths is 
the rate of the exponential distribution, which is the inverse of its mean. To 
specify an exponential prior that is pushed up more tightly around small 
branch lengths, you should specify a larger rate parameter. For instance, 
MrBayes > prset brlenspr=Unconstrained:Exp(100) 

- Exponential prior on branch lengths with a mean of 0.01. 
MrBayes > prset brlenspr=Unconstrained:Exp(10) 

- Exponential prior on branch lengths with a mean of 0.1. (Default) 
MrBayes > prset brlenspr=Unconstrained:Exp(1) 

- Exponential prior on branch lengths with a mean of 1. 

It has also been shown that the branch-length prior specification can affect 
the inferred posterior probabilities of the topology (Yang and Rannala 
2005). Therefore, when performing prior sensitivity analyses with different 
branch-length priors, it might be important to monitor sensitivity to inferred 
branch lengths and topologies. 

 
Manipulating Markov chain Monte Carlo (MCMC) 
Settings 
There are a huge number of potential settings pertaining to the Markov 
chain Monte Carlo (MCMC) analysis that can be manipulated in MrBayes. 
Most of these changes are made using the mcmcp and mcmc commands. 
These commands differ only in whether or not they begin the Markov chain 
when the command is issued. mcmcp just sets the parameter values 
without starting the analysis. mcmc will begin the analysis after setting the 
values of parameters. Some of the MCMC parameters that can be set 
using these commands include: 

ngen - The number of MCMC generations MrBayes will run before pausing   
nruns - The number of independent MCMC analyses run by MrBayes   
nchains - The number of Metropolis-coupled chains for each independent 

MCMC analysis  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samplefreq - The frequency with which MrBayes writes output to files   
printfreq - The frequency with which MrBayes prints output to the screen   
filename - The root name for output file names   
temp - The degree of heating for Metropolis-coupled chains 
 
Many other MCMC options can be set with these commands. The full list of 
these options can be obtained by typing help mcmcp or help mcmc. 

The other command useful in tweaking the details of the MCMC analysis is 
the propset command. propset can alter the relative frequency of proposals 
to different parameters, as well as the distributions from which proposals 
are drawn. Proposal distributions differ according to the parameter of 
interest. The final page of the MrBayes manual 
(http://mrbayes.sourceforge.net/manual.php) lists the proposal distributions 
for each parameter type and their associated tuning parameters. 

Finally, a 'word of caution'. Certain changes to proposals can make it 
virtually impossible for the MCMC analysis to mix properly across the 
posterior distribution and give biased results. Using rigorous checks of 
convergence should allow you to detect cases of very poor mixing. 

Summarizing Output 
After you have run an MCMC analysis in MrBayes and made sure that your 
runs have converged (a topic not explicitly covered in this tutorial – but see 
the software Tracer), you can summarize the estimated posterior 
distributions of both the parameter values and trees using 
the sump (parameters) and sumt (trees) commands. You can also exclude 
those samples biased by the starting point of an MCMC analysis, a process 
known as discarding the burn-in. Removing burn-in when summarizing the 
posterior distributions is done by specifying a value for the burn-in 
parameter with sump and sumt 
MrBayes > sump burnin=1000 

- Summarizing posterior samples of parameter values, discarding 1,000 
samples (NOT generations) 
MrBayes > sumt burnin=1000 

- Summarizing posterior samples of trees, discarding 1,000 samples 
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Several other parameters can be specified when performing posterior 
summaries. A full list can be obtained by typing help sump or help sumt. 
The output of the sump command will include means, medians, variances, 
and 95% credible intervals for all scalar parameters. It will also include an 
estimate of the marginal likelihood using the harmonic mean estimator. 

The output of the sumt command includes estimated posterior probabilities 
of branches (.parts file), estimated posterior probabilities of trees (.trprobs 
file), and a majority-rule consensus tree calculated from the posterior tree 
samples (.con file). 
Other software can help you summarize posterior distributions of trees and 
parameter values, as well as diagnose convergence.  See Tracer, AWTY, 
TreeSetViz, and TreeScaper. 
 

Estimating Marginal Likelihoods Using Stepping-stone 
Sampling 
The marginal likelihood of a model is an important quantity that allows 
comparison of fit across different models, accounting for uncertainty in the 
values of model parameters. The simplest way to estimate the marginal 
likelihood of a model based on the output of MCMC sampling of the 
posterior is to calculate the harmonic mean of their likelihood scores. 
However, the harmonic mean can have some highly undesirable statistical 
properties, including bias and extremely high variance. This leads to low 
repeatability across replicates for estimates that are inaccurate. A much 
more accurate and repeatable approach was recently developed, also 
based on importance sampling, and is known as stepping-stone sampling 
(Xie et al., 2011; Fan et al., 2011). In this approach, an MCMC chain is still 
used, but it samples a series of "power posterior distributions" that move 
progressively between the posterior and the prior (or vice versa). A 
theoretical treatment of this approach is beyond the scope of this tutorial, 
but I encourage any user interested in estimating marginal likelihoods to 
read the papers describing and characterizing this approach (Xie et al., 
2011; Fan et al., 2011). 
To estimate marginal likelihoods via stepping-stone in MrBayes, one first 
needs to specify appropriate settings. This can be done using the mcmcp 
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and ssp commands. Relevant parameters include the total number of 
generations sampled (set with mcmcp), the burn-in before the first step of 
the sampling (set with ssp), the burn-in for each sampling step (set with 
mcmcp), and the number of different power posterior distributions sampled 
(set with ssp). 

After everything is set up, start the stepping-stone sampling process using 
the simple ss command: 
MrBayes > ss 

Once sampling is completed across all power posterior distributions, 
MrBayes will provide an estimate of the marginal likelihood. It is always 
good practice to estimate these values several times with independent runs 
to ensure their repeatability. 
The sumss command can also be used to check the quality of the stepping 
stone sampling. It provides step-specific views of likelihood profiles, 
allowing one to look for ‘temperature lag’. Temperature lag occurs when not 
enough samples are removed at the beginning of a new step, causing the 
first few recorded samples to be influenced by the previous step. This can 
produce a biased estimate of the marginal likelihood. 
NOTE: Because MrBayes is sampling many different distributions that vary 
between the posterior and prior when stepping-stone is run, do NOT use 
the trees and parameter files from a stepping-stone run to estimate 
posterior probabilities and credible intervals. 

Analyzing Phylogenomic Datasets 
There is no built-in way for MrBayes to explicitly handle the analysis of very 
large, genome-scale datasets.  One option is to simply put all of your data 
in one Nexus file and provide character set definitions for each locus.  By 
linking or unlinking various things across loci, you can vary the amount of 
independence given to each gene.  The simplest concatenated analysis 
would apply the same sequence evolution model, priors, branch lengths, 
and topology to each gene.  One could then allow separate models for 
each locus, separate overall rates of evolution, entirely separate branch 
lengths, or eventually entirely distinct topologies.  The downside of this 
approach is that you are often constraining the computational resources 
available to analyze the overall dataset (although the parallel version of 
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MrBayes on a high-performance computing cluster may alleviate some of 
this). 

Another approach is to separate the data from each locus into individual 
files.  You can then set up separate command files tailored to each locus.  
If you have access to high-performance computing resources (even 
through publicly available web portals), you can run each of these jobs in 
parallel.  This approach, obviously, does not share any information across 
loci.  It is equivalent to the case where all aspects of the analysis are 
unlinked across loci. 
 
BUCKy uses the output of independent analyses across different genes to 
try and estimate the degree of topological concordance across the genome. 
 
Exercises 
Using your newfound MrBayes prowess, see if you set up analyses to 
answer the following questions (or verify that things are working like they 
should).  You may wish to work with a partner or two, and have each 
person run a different analysis involved in the comparisons below. Use the 
100 loci provided from a recent study (Faircloth et al., 2012) attempting to 
infer the placement of turtles using the ultraconserved element (UCE) 
approach to sequencing.  Try answering these questions with one locus (or 
a handful of loci) at first and see what you can scale up. 
1. Let’s start things off easy.  Set up a Jukes-Cantor model (all 

substitution types equally probably and all base frequencies equal).  
Run the MCMC.  Look at the header of your .p files to make sure your 
model was set up correctly.  Check for topological convergence and 
(if you have Tracer), check for convergence of scalar values.  Pick an 
appropriate burn-in and use sump to summarize your run.  Record 
the log harmonic mean of the likelihood values (an estimate of the log 
marginal likelihood – NOT the same as the harmonic mean of the log-
likelihood values) for each independent run (by default, 2). 

 
2. Set up a GTR+G model (all substitution types free to vary, all base 

frequencies allowed to be different, and a gamma distribution 
describing the variation in rates of evolution across sites).  Run the 
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MCMC.  Do the same checks as with JC.  Again, record the harmonic 
mean estimates of the marginal likelihood. 

 
3. Let’s pretend that this is a protein-coding gene.  Set up a partitioned 

analysis by codon position.  Do the same as for JC and GTR+G. 
 
4. Manually calculate the Bayes factors between each pair of these 

three models using the harmonic mean estimates. 
 

log
𝑚𝑎𝑟𝑔. 𝑙𝑖𝑘𝑒.𝑀!

𝑚𝑎𝑟𝑔. 𝑙𝑖𝑘𝑒.𝑀!
= log 𝑚𝑎𝑟𝑔. 𝑙𝑖𝑘𝑒.𝑀! − log(𝑚𝑎𝑟𝑔. 𝑙𝑖𝑘𝑒  𝑀!) 

 
 Which model is preferred?  How strongly? 
 
5. Now, run stepping-stone sampling under each of three models and 

record marginal likelihood estimates.  How do these values compare 
to the harmonic mean estimates?  Calculate log(BF)s using the 
stepping-stone estimates.  How do these compare to those estimated 
from the marginal likelihoods? 

 
6. Now, set up a reversible jump MCMC (RJ-MCMC) that samples 

across different sub-models of the GTR class.  Run this MCMC 
analysis.  Use sump to summarize the results.  Which models had the 
highest posterior probability? 

 
7. If you have access to PAUP* or have Biopython installed and can use 

the script uploaded in the course copy folder, combine some of the 
genes into one dataset.  If you can’t do this on your own, or don’t 
want to, look at the file “firstFive.nex”.  This contains a concatenation 
of all the data from the first five loci.  Set up one analysis that unlinks 
models (let’s say, GTR+G) across loci.  Estimate the marginal 
likelihood of this model using stepping-stone.  Now unlink rate 
multipliers across loci and repeat.  Now unlink all branch lengths.  
Finally, unlink topology.  Which of these models is preferred?  What 
does this suggest about variation across loci? 

 
8. Either by eye using the consensus topologies (perhaps in FigTree), or 

using TreeSetViz or TreeScaper to visualize the full posterior 
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distribution, compare the topologies inferred from each gene.  How 
much do they vary?  Are any branches strongly supported and 
conflicting? 

 
9. Try increasing or decreasing the mean of the exponential branch-

length prior and check to see how much your inferred tree length 
changes.  Do your results (either tree length or topology) change? 

 
10. Try performing a Bayes factor based test for the presence/absence of 

a branch placing turtles as sister to archosaurs (birds and 
crocodilians).  Note that (as recently pointed out by Bergsten et al. in 
a forthcoming Syst. Biol. paper), to get meaningful results from tests 
of topology using Bayes factors, you have to provide the proper 
context.  In other words, you need to constrain those parts of the tree 
for which you have strong evidence.  Below are all the 
uncontroversial, ‘backbone’ constraints for the amniote taxa in the 
Crawford et al. data.  After applying these, try running a stepping 
stone that positively and negatively constrains the position of turtles 
as sister to archosaurs (this is the relationship suggested by Crawford 
et al. based on analyses of the entire dataset).  How much support 
does each gene provide for this relationship? 

 
constraint birdsPos hard = gallus_gallus zebra_finch; 
constraint crocsPos hard = alligator_mississippiensis crocodylus_porosus; 
constraint archsPos partial = alligator_mississippiensis crocodylus_porosus gallus_gallus zebra_finch : 
 homo_sapiens sphenodon_tuatara pantherophis_guttata anolis_carolinensis; 
constraint lepsPos hard = sphenodon_tuatara pantherophis_guttata anolis_carolinensis; 
constraint squamsPos hard = pantherophis_guttata anolis_carolinensis; 
constraint turtsPos hard = chrysemys_picta pelomedusa_subrufa; 
 
 


